1982 AHSME Problems/Problem 9

Problem

A vertical line divides the triangle with vertices $(0,0), (1,1)$, and $(9,1)$ in the $xy\text{-plane}$ into two regions of equal area. The equation of the line is $x=$

$\textbf {(A)}\ 2.5 \qquad  \textbf {(B)}\ 3.0 \qquad  \textbf {(C)}\ 3.5 \qquad  \textbf {(D)}\ 4.0\qquad  \textbf {(E)}\ 4.5$

Solution

[asy] size(350); defaultpen(fontsize(10)); pair A=origin, O=(10,0), B=(3,0), N=(0,5), C=(3,5), P=(5,0), D=(1,1), G=(9,1), F=(1,0); draw(G--A--D--cycle, linewidth(0.7)); draw(D--F, linewidth(0.6)); draw(B--C, linewidth(0.5)); draw(A--N, linewidth(0.4)); draw(A--O, linewidth(0.4)); dot(A^^B^^D^^G^^F); label("$A$", D, W); label("$B$", A, dir(0)); label("$C$", G, dir(100)); label("$E$", B, SE); label("$F$", F, SE); label("$(9,1)$", G, SE); label("$(0,0)$", A, SW); label("$8$", D--G, dir(40)); label("$y=x/9$", A--G, SE); label("$x=a$", B--N, SE); label("$(1,1)$", D, NE);[/asy] The vertical line that divides $\triangle ABC$ into two equal regions has equation $x=a$, as shown in the diagram. The area of $ABC$ is $\frac{1}{2}\cdot AC\cdot AF = \frac{1}{2} \cdot 8 \cdot 1 = 4$, so the two regions must each have area $2$ .

Since $\triangle ABF$ has area $\frac{1}{2}$, the portion of $\triangle ABC$ to the left of $AF$ will be less than $\frac{1}{2}$ and therefore less than $2$. So $\overline{AF}$ is to the left of vertical line $x=a$ (Passing through point $E$).

The equation of line BC is $y=\frac{1}{9}x$ and the vertical line $x=a$ intersects $\overline{BC}$ at the point $\left(a, \frac{a}{9}\right)$ . Because the area of the portion of $\triangle ABC$ on the right is $2$, we have \[2=\frac{1}{2}\left(1-\frac{a}{9}\right)(9-a)\] which simplifies to \[(9-a)^2=36\]

This equation has solutions $a = 3$ and $a = 15$, but $1 < a < 9$ so $a = \boxed{(\mathbf{B}) 3.0}$.

See Also

1982 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png