2002 CEMC Gauss (Grade 8) Problems/Problem 1

Problem

The value of $\frac{1}{2} + \frac{1}{4}$ is

$\text{ (A) }\ 1 \qquad\text{ (B) }\ \frac{1}{8} \qquad\text{ (C) }\ \frac{1}{6} \qquad\text{ (D) }\ \frac{2}{6} \qquad\text{ (E) }\ \frac{3}{4}$

Solution

$\frac{1}{2} + \frac{1}{4} = \frac{1 \times 2}{2 \times 2} + \frac{1 \times 1}{4 \times 1} = \frac{2}{4} + \frac{1}{4}$

$=\frac{2 + 1}{4} = \boxed {\textbf {(E) } \frac{3}{4}}$

~anabel.disher

2002 CEMC Gauss (Grade 8) (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CEMC Gauss (Grade 8)