2004 CEMC Gauss (Grade 8) Problems/Problem 2

Problem

The value of $\frac{1}{2} + \frac{3}{4} - \frac{5}{8}$ is

$\textbf{(A)}\ \frac{9}{14} \qquad\textbf{(B)}\ 0 \qquad\textbf{(C)}\ \frac{5}{8} \qquad\textbf{(D)}\ \frac{1}{4} \qquad\textbf{(E)}\ \frac{7}{8}$

Solution 1

We can first use a common denominator, and then find the value of the expression.

We can see that $2 = 2$, $4 = 2^{2}$, and $8 = 2^{3}$. We then see that $8$ is the common denominator, so we have:

$\frac{1}{2} = \frac{1 \times 4}{2 \times 4} = \frac{4}{8}$

$\frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8}$

$\frac{5}{8} = \frac{5 \times 1}{8 \times 1} = \frac{5}{8}$

Thus:

$\frac{1}{2} + \frac{3}{4} - \frac{5}{8} = \frac{4}{8} + \frac{6}{8} - \frac{5}{8} = \frac{4 + 6 - 5}{8}$

$=\frac{10 - 5}{8} = \boxed {\textbf {(C) } \frac{5}{8}}$

~anabel.disher

2004 CEMC Gauss (Grade 8) (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
CEMC Gauss (Grade 8)