2007 SMT Algebra Round Problem 1

Problem

Find all real roots of $f$ if $f\left(x^{\frac19}\right)=x^2-3x-4$.

Solution

After factoring, we get $f\left(x^{\frac19}\right)=(x-1)(x+4)$, so to make $(x-1)(x+4)=0$, $x=4$ or $-1$, so, we have $4^{\frac19}$ or $(-1)^{\frac19}$, and because $4^{\frac19}$ can't be simplified and $(-1)^{\frac19}=-1$, our answer is roots $=\boxed{\mathrm{4^{\frac19} \text{ or } -1}}$.

~Yuhao2012