2016 AMC 10A Problems/Problem 1

Problem

What is the value of $\dfrac{11!-10!}{9!}$?

$\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

Solution 1

We can use subtraction of fractions to get \[\frac{11!-10!}{9!} = \frac{11!}{9!} - \frac{10!}{9!} = 110 -10 = \boxed{\textbf{(B)}\;100}.\]

Solution 2

Factoring out $9!$ gives $\frac{11!-10!}{9!} = \frac{9!(11 \cdot 10 - 10)}{9!} = 110-10=\boxed{\textbf{(B)}~100}$.


Solution 3

$\dfrac{11!-10!}{9!}$ consider 10 as n $\dfrac{(n+1)!-n!}{(n-1)!}$ simpify $\dfrac{(n+1)n!-(-1)n!}{(n-1)!}$ = $\dfrac{n(n!)}{(n-1)!}$ = $\dfrac{n(n(n-1)!)}{(n-1)!}$ = $\dfrac{n(n)(1)}{(1}$ = $\dfrac{n^2}{1}$ subsitute n as 10 again $\dfrac{10^2}{1}$

answer is $10^2$ which is 100

Solution 4

We are given the equation $\frac{11!-10!}{9!}$

This is equivalent to $\frac{11(10!) - 1(10!)}{9!}$ Simplifying, we get $\frac{(11-1)(10!)}{9!}$, which equals $10 \cdot 10$.

Therefore, the answer is $10^2$ = $\boxed{\textbf{(B)}~100}$.

~TheGoldenRetriever

Solution 5 (This is a joke)

Let \[I_n := \int_0^\infty x^n e^{-x} \, dx = n!\] (the Gamma–integral).

Then \[\frac{11! - 10!}{9!} = \frac{I_{11} - I_{10}}{I_9} = \frac{\int_0^\infty e^{-x} (x^{11} - x^{10}) \, dx}{I_9}.\] Integration by parts on the numerator with \( u = x^{11} - x^{10} \), \( dv = e^{-x} \, dx \) (so \( du = (11x^{10} - 10x^9) \, dx \), \( v = -e^{-x} \)) gives \[\int_0^\infty e^{-x} (x^{11} - x^{10}) \, dx = \left[ -e^{-x} (x^{11} - x^{10}) \right]_0^\infty + \int_0^\infty e^{-x} (11x^{10} - 10x^9) \, dx = 11 I_{10} - 10 I_9,\] since the boundary term vanishes.

Hence \[\frac{I_{11} - I_{10}}{I_9} = \frac{11 I_{10}}{I_9} - 10.\] Do another integration by parts to relate \( I_{10} \) and \( I_9 \): \[I_{10} = \int_0^\infty x^{10} e^{-x} \, dx = \left[ -x^{10} e^{-x} \right]_0^\infty + 10 \int_0^\infty x^9 e^{-x} \, dx = 10 I_9.\] Therefore \[\frac{I_{11} - I_{10}}{I_9} = 11 \cdot 10 - 10 = 100.\]

$\boxed{(B) 100}$.

~Pinotation

~Minorly Edited by OffBrandCab

Video Solution (HOW TO THINK CREATIVELY!!!)

https://youtu.be/r5G98oPPyNM

~Education, the Study of Everything


Video Solution

https://youtu.be/VIt6LnkV4_w


https://youtu.be/CrS7oHDrvP8

~savannahsolver

Video Solution (FASTEST METHOD!)

https://youtu.be/jowREGsZaTs

~Veer Mahajan


See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png