2018 MPFG Problem 19

Problem 19

Consider the sum

\[S_n = \sum_{k=1}^{n}\frac{1}{\sqrt{2k-1}}\]

Determine $\lfloor S_{4901} \rfloor$. Recall that if $x$ is a real number, then $\lfloor x \rfloor$ (the floor of x) is the greatest integer that is less than or equal to $x$.

Solution 1

We can think of this problem through integration perspectives. Observe that $S_n$ looks very similar to a Riemann sum.

\[S_n = \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{3}}+ ... + \frac{1}{\sqrt{9801}}\]

We first applicate the right Riemann sum of $y=\frac{1}{\sqrt{x}}$

Right rie.jpg

\[2S_n > \int_{1}^{9803} \frac{1}{\sqrt{x}} \,dx\]

\[2S_n > \left. (2x^{\frac{1}{2}})\right|_{1}^{9803}\]

\[2S_n > 2(\sqrt{9803}-1)\]

\[S_n > \sqrt{9803}-1\]

Then applicate the left Riemann sum of $y=\frac{1}{\sqrt{x}}$

Left rie.jpg

\[2S_n-1 < \int_{1}^{9801} \frac{1}{\sqrt{x}} \,dx\]

\[2S_n-1 < \left. (2x^{\frac{1}{2}})\right|_{1}^{9801}\]

\[S_n-\frac{1}{2} > \sqrt{9801}-1\]

\[S_n < \sqrt{9801}-\frac{1}{2}\]


We conclude that:

$\sqrt{9803}-1 < S_n < \sqrt{9801}-\frac{1}{2}$

$\lfloor S_n \rfloor = \boxed{98}$

~cassphe