2021 MPFG Problem 19

Problem

Let $T$ be a regular tetrahedron. Let $t$ be the regular tetrahedron whose vertices are the centers of the faces of $T$. Let $O$ be the circumcenter of either tetrahedron. Given a point $P$ different from $O$, let $m(P)$ be the midpoint of the points of intersection of the ray $\overrightarrow{OP}$ with $t$ and $T$. Let $S$ be the set of eight points m(P) where P is a vertex of either $t$ or $T$. What is the volume of the convex hull of $S$ divided by the volume of $t$? Express your answer as a fraction in simplest form.

Solution 1

Connect $O$ with the 4 vertices of $T$. Extend the line made by connecting the top vertex of $T$ with $O$, intersecting at the base/vertex of $t$.

$S$ equals to $1$ regular tetrahedron with $4$ protruding tetrahedrons.

New3d.png

2d.png Protrudes.png

$S_{tetra} = (\frac{5}{3})^3 = \frac{125}{27}$

$S_{total} = \frac{125}{27} \cdot (1+\frac{\frac{4}{3}}{\frac{5}{3}}) = \boxed{\frac{25}{3}}$

~cassphe