2022 SSMO Speed Round Problems/Problem 3

Problem

Let $ABCD$ be a parallelogram such that $E$ is a point on $CD$ such that $\frac{CE}{DE}=\frac{2}{3}.$ Suppose that $BE$ and $AC$ intersect at $F.$ If the area of triangle $AEF$ is $15,$ find the area of $ABCD$.

Solution

We have \begin{align*} [AEF] &= [AEC]-[CEF]\\ &= \frac{CE}{CD}\cdot[ACD]-\frac{CE}{CD}\cdot\frac{CE}{CE+AB}\cdot[ACD]\\ &= \frac{CE}{CE+DE}\cdot[ACD]-\frac{CE}{CE+DE}\cdot\frac{CE}{CE+CD}\cdot[ACD]\\ &= \frac{2}{2+3}\cdot[ACD]-\frac{2}{2+3}\cdot\frac{CE}{CE+(CE+DE)}\cdot[ACD]\\ &= \frac{2}{5}\cdot[ACD]-\frac{2}{5}\cdot\frac{2}{2+(2+3)}\cdot[ACD]\\ &= \left(\frac{2}{5}-\frac{2}{5}\cdot\frac{2}{7}\right)[ACD]\\ &= \frac{2}{7}[ACD] = \frac{2}{7}\cdot\frac{1}{2}\cdot[ABCD] = \frac{1}{7}[ABCD]\implies\\ [ABCD] &= 7[AEF] = 7\cdot15 = \boxed{105}. \end{align*}

~pinkpig