2024 SSMO Team Round Problems/Problem 15
Problem
In triangle inscribed in circle
let
be the midpoint of
Denote
as the intersection of
with
If
and
find the perimeter of triangle
Solution
We will use barycentric coordinates with as the reference triangle. Let
Note that the circumcircle of
can be represented as
Since
lies on cevian
with
we have
for
Substituting into the equation for the circumcircle of
we have
\begin{align*}
a^2y_pz_p+b^2x_pz_p+c^2x_py_p&=0\implies\\
a^2y_p^2+b^2x_py_p+c^2x_py_p&=0\implies\\
a^2y_p &= -(b^2+c^2)x_p\implies\\
y_p&=-\frac{b^2+c^2}{a^2}x_p.
\end{align*}
From
we have
So,
Now, we have
So,
\begin{align*}
PB^2 &= \left|a^2y_{pb}z_{pb}+b^2x_{pb}z_{pb}+c^2x_{pb}y_{pb}\right|\\
&=\left|a^2\left(\frac{b^2+c^2-a^2}{2b^2+2c^2-a^2}\right)\left(-\frac{b^2+c^2}{2b^2+2c^2-a^2}\right)\\+b^2\left(\frac{a^2}{2b^2+2c^2-a^2}\right)\left(-\frac{b^2+c^2}{2b^2+2c^2-a^2}\right)\\+c^2\left(\frac{a^2}{2b^2+2c^2-a^2}\right)\left(\frac{b^2+c^2-a^2}{2b^2+2c^2-a^2}\right)\right|\\
&=\frac{|a^4b^2-2a^2b^4-2a^2b^2c^2|}{(2b^2+2c^2-a^2)^2}\\
&=\frac{a^2b^2(2b^2+2c^2-a^2)}{(2b^2+2c^2-a^2)^2}\\
&=\frac{a^2b^2}{2b^2+2c^2-a^2}\implies\\
PB&=\frac{ab}{\sqrt{2b^2+2c^2-a^2}}
\end{align*}
In the same manner, we have
So, we have
This means
and
Solving for
and
, we have
Substituting, we get
\begin{align*}
\sqrt{2b^2+2c^2-a^2} &= 40\\
2b^2+2c^2-a^2 &= 40^2\implies\\
2\left(\left(\frac{9\cdot40}{a}\right)^2+\left(\frac{13\cdot40}{a}\right)^2\right)-a^2 &=40^2\implies\\
a^4+40^2a^2-2\left((9\cdot40)^2+(13\cdot40)^2\right) &= 0\implies\\
a^2 &= \frac{-40^2\pm\sqrt{40^4+8\left((9\cdot40)^2+(13\cdot40)^2\right)}}{2}\\
&=(20)\left(\pm\sqrt{40^2+8(9^2+13^2)}-40\right)\\
&=(20)\left(\pm60-40\right) = 400,-2000\implies\\
a&=20.
\end{align*}
So,
and
In conclusion, the perimeter of
is
~SMO_Team