2024 SSMO Tiebreaker Round Problems/Problem 3
Problem
Let be a terminating decimal. The length of
is defined to be the length of the shortest sub-sequence of consecutive digits that include all nonzero digits and at least one of
So, the length of
is
and the length of
is
Let
be the average of all numbers with a terminating decimal of length
Find the value of
Solution
First, we will compute the value of Denote
as the expected value of a terminating decimal of length
with leading term
We have
So,
Now,
\begin{align*}
f(n,i)&=\mathbb{E}\left(a_ia_{i-1}\dots a_0.a_{-1}\dots a_{i+1-n}\right)\\
&=\mathbb{E}\left(\sum_{k=i+1-n}^{i}a_k10^k\right)\\
&=\sum_{k=i+1-n}^i\mathbb{E}\left(a_k10^k\right)\\
&=\sum_{k=i+1-n}^i10^k\mathbb{E}\left(a_k\right)\\
&=10^i\mathbb{E}(a_i)+\sum_{k=i+1-n}^{i-1}10^k\mathbb{E}\left(a_k\right)\\
&=10^i\left(\frac{\sum_{k=1}^{9}k}{9}\right)+\sum_{k=i+1-n}^{i-1}10^k\mathbb{E}\left(\frac{\sum_{k=0}^{9}k}{10}\right)\\
&=5\cdot10^i+\sum_{k=i+1-n}^{i-1}\left(4.5\cdot10^k\right).
\end{align*}
Substituting, we have
\begin{align*}
\sum_{n=1}^{10}(n+1)f(n)&=\sum_{n=1}^{10}\sum_{i=-1}^{n-1}f(n,i)\\
&=\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\left(5\cdot10^i+\sum_{k=i+1-n}^{i-1}\left(4.5\cdot10^k\right)\right)\\
&=\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\left(5\cdot10^i\right)+\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\sum_{k=i+1-n}^{i-1}\left(4.5\cdot10^k\right)\\
&=\left(\sum_{i=-1}^{9}\left((50-5i)\cdot10^i\right)-\frac{1}{2}\right)+\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\left(4.5\cdot\left(\frac{10^{i}-10^{i+1-n}}{9}\right)\right)\\
&=\left(\sum_{i=-1}^{9}\left((50-5i)\cdot10^i\right)-\frac{1}{2}\right)+\frac{1}{10}\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\left(5\cdot10^i\right)-\sum_{n=1}^{10}\sum_{i=-1}^{n-1}\left(\frac{10^{i+1-n}}{2}\right)\\
&=\left(\sum_{i=-1}^{9}\left((50-5i)\cdot10^i\right)-\frac{1}{2}\right)+\frac{1}{10}\left(\sum_{i=-1}^{9}\left((50-5i)\cdot10^i\right)-\frac{1}{2}\right)\\&-\left(\sum_{i=-10}^{0}\left(\frac{(i+11)\cdot10^{i}}{2}\right)+\frac{1}{2}\right)\\
&=\frac{11}{10}\left(\sum_{i=-1}^{9}\left((50-5i)\cdot10^i\right)\right)-\sum_{i=-10}^{0}\left(\frac{(i+11)\cdot10^{i}}{2}\right)-\frac{21}{20}.\\
\end{align*}
Now, we will approximate this value. The first summation approximates to
\begin{array}{ccccccccccccc} & & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & & 1 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & & & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & & & & 2 & 5 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & & & & & 3 & 0 & 0 & 0 & 0 & 0 & . & 0 \\ & & & & & & & 3 & 5 & 0 & 0 & 0 & . & 0 \\ & & & & & & & & 4 & 0 & 0 & 0 & . & 0 \\ & & & & & & & & & 4 & 5 & 0 & . & 0 \\ & + & & & & & & & & & 5 & 0 & . & 0 \\ \hline & & 6 & 1 & 7 & 2 & 8 & 3 & 9 & 5 & 0 & 5 & . & 5 \\ \end{array}
Multiplying by we have
\begin{array}{cccccccccccccc} & & 6 & 1 & 7 & 2 & 8 & 3 & 9 & 5 & 0 & 5 & . & 5 & 0 \\ &+ & 6 & 7 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & . & 0 & 5 \\ \hline & & 6 & 7 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & . & 0 & 5 \\ \end{array}
Now, the second summation is approximately Combining, we can approximate the expression as
~SMO_Team