2025 SSMO Team Round Problems/Problem 6

Problem

The rhombus $PQRS$ has side length $3$. The point $X$ lies on segment $PR$ such that line $QX$ is perpendicular to line $PS$. Given $QX=2$, the area of $PQRS$ can be written as $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

[asy] unitsize(1cm); import geometry;  pair P,Q,R,S,T,X,Y;  P=(0,0); Q=(3,2); R=(6,0); S=(3,-2); T=(3,0); X=(1.667,0); Y=extension(Q,X,P,S);  draw(P--Q--R--S--cycle); draw(Q--X,red); draw(X--Y,red+dashed); draw(P--R,blue); draw(Q--S,blue);  label("$P$",P,dir(180)); label("$Q$",Q,dir(90)); label("$R$",R,dir(0)); label("$S$",S,dir(270));  label("$X$",X,dir(-45)); label("$Y$",Y,dir(-135)); label("$C$",T,dir(-45));  draw(rightanglemark(Q,T,X,5)); draw(rightanglemark(P,Y,Q,5));  dot(P); dot(Q); dot(R); dot(S); dot(T); dot(X); dot(Y); [/asy]

Let $C$ denote the center of the rhombus and let $Y$ be the intersection of $PS$ and $QX$. Notice that $\triangle QCX \sim \triangle PYX \sim \triangle PCS \cong \triangle PCQ$, and that the ratio of the side lengths of $\triangle QCX$ to those of $\triangle PCQ$ is $\tfrac{QX}{PQ} = \tfrac{2}{3}$.

Let $PC = a$ and $QC = b$. By similar triangles, we have $CX = \tfrac{2}{3}b$. Then, Pythagoras on $\triangle QCX$ and $\triangle PCQ$ yields the system of equations \begin{align*} b^2 + (\tfrac{2}{3}b)^2 &= 4 \\ a^2+b^2 &= 9. \end{align*}Solving, we find that $(a,b) = (\tfrac{9}{\sqrt{13}}, \tfrac{6}{\sqrt{13}})$. The area of the rhombus is $2ab = \tfrac{108}{13}$, and we extract $108+13 = \boxed{121}$.

~Sedro