During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Cauchy's Integral Theorem

Cauchy's Integral Theorem is one of two fundamental results in complex analysis due to Augustin Louis Cauchy. It states that if $f : \mathbb{C} \to \mathbb{C}$ is a complex-differentiable function in some simply connected region $R \subset \mathbb{C}$, and $C$ is a path in $R$ of finite length whose endpoints are identical, then \[\int\limits_C f(z) dz = 0 .\] The other result, which is arbitrarily distinguished from this one as Cauchy's Integral Formula, says that under the same premises if $C$ is a circle of center $z_0$ with counteclockwise direction, then \[f(z_0) = \frac{1}{2\pi i } \int\limits_C \frac{f(z)}{z- z_0} dz .\]

Proofs

Proof 1

We will prove the theorem for the case when $C$ is a triangle. We leave it as an exercise to verify that all other paths can be sufficiently approximated with triangles.

Lemma. Cauchy's Integral Theorem holds when $f(z)$ is a constant function.

Proof. Let $C$ be a triangle; let $X$, $Y$, and $Z$ be its vertices, Let $h$ a mapping of $[0,3]$ onto $C$ such that $h([0,1]) = XY$, $h([1,2]) = YZ$, $h([2,3]) = ZX$, and such that $h$ is linear on each of these subintervals. Let $c$ be the constant value of $f$. Then \begin{align*} \int\limits_C f(z)dz &= \int\limits_0^1 f(h(t))h'(t) dt + \int\limits_1^2 f(h(t))h'(t) dt +\int\limits_2^3 f(h(t)) h'(t) dt \\ &= c (B-A) + c(C-B) + c(B-C) = 0 . \qquad \blacksquare \end{align*}

Now we prove the main result.

We construct a sequence parths $C_0 = C, C_1, \dotsc$, recursively, as follows. Let $X, Y, Z$ be the vertices of $C_n$, and let $X'$, $Y'$, $Z'$ be the respective midpoints of $YZ$, $ZX$, $XY$. Then \begin{align*} \int\limits_{C_n} f(z)dz &= \int\limits_{XY} f(z)dz +\int\limits  _{YZ} f(z)dz + \int\limits_{ZX} f(z)dz \\ &= \int\limits_{XZ'} f(z)dz + \int\limits_{Z'Y}f(z)dz + \int\limits_{ YX'}f(z)dz + \int\limits_{X'Z}f(z)dz + \int\limits_{ZY'}f(z)dz + \int\limits_{Y'X} f(z)dz \\ &= \int\limits_{XZ'Y'}f(z)dz + \int\limits_{Z'YX'}f(z)dz + \int\limits_{ X'ZY'}f(z)dz + \int\limits_{X'Y'Z'}f(z)dz . \end{align*} We choose $C_{n+1}$ from the paths $XZ'Y'$, $Z'YX'$, $X'ZY'$, $X'Y'Z'$ so that the quantity $\biggl\lvert \int\limits_{C_{n+1}} f(z) dz \biggr\rvert$ is maximal. Then \[\biggl\lvert \int\limits_{C_n} f(z)dz \biggr\rvert \le 4 \cdot \biggl\lvert \int\limits_{C_{n+1}} f(z)dz \biggr\rvert ,\] so that \[\biggl\lvert \int\limits_{C} f(z)dz \biggr\rvert \le 4^n \cdot \biggl\lvert \int\limits_{C_{n}} f(z)dz \biggr\rvert .\]

Let $L(n)$ denote the longest side length in the triangle $C_n$; let $P(n)$ denote the perimeter of $C_n$. Then $L(n) = 2^{-n} L(0)$ and $P(n) = 2^{-n} P(0)$.

Let $R_n$ denote the closed region bounded by $C_n$. Since $R_0, R_1, \dotsc$ is a descending chain of nonempty closed sets, the set $\bigcap_{k=0}^\infty R_k$ is not empty, so let us choose some $z_0$ that is an element of $R_k$, for all $k \ge 0$.

The function $f$ is differentiable at the point $z_0$, so for every $\epsilon > 0$, there exists an $\delta$ such that for all $z$ for which $\lvert z- z_0 \rvert < \delta$, \[\left\lvert f(z) - f(z_0) \right\rvert < \epsilon \left\lvert z- z_0 \right\rvert .\] If we pick $n$ such that $L(n) \le \delta$, then this inequality holds for all $z \in C_n$. By the lemma, \[\int\limits_{C_n} f(z)dz = \int\limits_{C_n} \bigl[ f(z) - f(z_0) \bigr] dz .\] Now, let $h : [0, P(n)] \to C_n$ be a parameterization of $C_n$ such that $\lvert h'(t) \rvert = 1$ for all $t \in [0, P(n)]$. Then \begin{align*} \biggl\lvert \int\limits_{C_n} \bigl[ f(z) - f(z_0) \bigr] dz \biggr\rvert &= \biggl\lvert \int\limits_0^{P(n)} \bigl[ f(h(t)) - f(z_0) \bigr] h'(t) dt \biggr\rvert \\ &\le \int\limits_0^{P(n)} \bigl\lvert f[h(t)] - f(z_0) \bigr\rvert dt \\ &< \epsilon \int\limits_0^{P(n)} \bigl\lvert h(t) - z_0 \bigr\rvert dt \\ &\le \epsilon \int\limits_0^{P(n)} L(n) dt \\ &= \epsilon P(n) L(n) = \epsilon 4^{-n} P(0) L(0) . \end{align*} Therefore \[\biggl\lvert \int\limits_C f(z)dz \biggr\rvert \le 4^n \biggl\lvert \int\limits_{C_n} f(z)dz \biggr\rvert < 4^n \epsilon 4^{-n}P(0) L(0) = \epsilon P(0)L(0) .\] Since $\epsilon$ can be arbitrarily small, it follows that \[\biggl\lvert \int\limits_{C} f(z) dz \biggr\rvert = 0,\] whence \[\int\limits_C f(z) dz = 0 ,\] as desired. $\blacksquare$

Proof 2

We use Green's Theorem.

Let $x,y$ denote the real numbers such that $z = x+iy$. Let Let $A$ and $B$ be the functions mapping $\Re R \times \Im R$ into $\mathbb{R}$ such that $f(z) = A(x,y) + iB(x,y)$. Then \begin{align*} \int\limits_C f(z) dz &= \int\limits_C f(z) (dx + i dy) = \int\limits_C \bigl[ A(x,y) + i B(x,y) \bigr] (dx + i dy) \\ &= \int\limits_C \bigl[ A(x,y) dx - B(x,y) dy \bigr] + i \int\limits_C \bigl[ A(x,y)dy + B(x,y)dx \bigr] . \end{align*} Now, since $f(z)$ is complex-differentiable, \begin{align*} \frac{\partial A}{\partial y} &= - \frac{\partial B}{\partial x} ,\\ \frac{\partial B}{\partial y} &= \frac{\partial A}{\partial x} . \end{align*} Let $D$ be the region bounded by $C$. Then by Green's theorem, \[\int\limits_C \bigl[ A(x,y) dx - B (x,y)dy \bigr] = \iint\limits_D \left( -\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) = 0 ,\] and similarly, \[\int\limits_C \bigl[ B(x,y)dx + A(x,y) dy \bigr] = \iint\limits_D \left( \frac{\partial A}{\partial x} - \frac{\partial B}{\partial y} \right) = 0 .\] Thus Cauchy's theorem holds. $\blacksquare$

Meaning

The Cauchy Integral Theorem guarantees that the integral of a function over a path depends only on the endpoints of a path, provided the function in question is complex-differentiable in all the areas bounded by the paths. Indeed, if $P_1$ and $P_2$ are two paths from $A$ to $B$, then \[\int\limits_{P_1} f(z)dz - \int\limits_{P_2} f(z)dz =  \int\limits_{P_1 - P_2} f(z)dz = 0 .\]