During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Cavalieri's principle

If the cross sections of two 2D objects at each height have the same length, the areas of the 2D objects are the same.

[asy] label("Equal Area:",(2.25,3)); draw((0,0)--(1,0)--(1.5,2)--(0.5,2)--cycle); draw("$1$",(0.25,1)--(1.25,1),grey); draw((3,0)--(4,0)--(4,2)--(3,2)--cycle); draw("$1$",(3,1)--(4,1),grey); [/asy]

If the cross sections of two 3D objects at each height have the same area, the volumes of the 3D objects are the same.

[asy] size(300); import three;  currentprojection=perspective(1,0,0.5);  label("Equal Volume:",(1.5,2));  pen bg=paleblue+opacity(0.2); draw(unitcone,bg); pen bg2=gray(0.9)+opacity(0.4); draw(unitcircle3, bg2);  draw(shift(-sqrt(pi)/2,3,0)*scale(sqrt(pi),sqrt(pi),1)*surface((0,0,0)--(1,0,0)--(0.5,0.5,1)--cycle),bg); draw(shift(-sqrt(pi)/2,3,0)*scale(sqrt(pi),sqrt(pi),1)*surface((1,1,0)--(1,0,0)--(0.5,0.5,1)--cycle),bg); draw(shift(-sqrt(pi)/2,3,0)*scale(sqrt(pi),sqrt(pi),1)*surface((1,1,0)--(0,1,0)--(0.5,0.5,1)--cycle),bg); draw(shift(-sqrt(pi)/2,3,0)*scale(sqrt(pi),sqrt(pi),1)*surface((0,0,0)--(0,1,0)--(0.5,0.5,1)--cycle),bg); draw(shift(-sqrt(pi)/2,3,0)*scale(sqrt(pi),sqrt(pi),1)*unitsquare3,bg2);  label("$\pi$",(0,0,0),bg2); label("$\pi$",(0,3+sqrt(pi)/2,0)); [/asy]