User talk:Bobthesmartypants/Sandbox

L Edit this page

This Sandbox page is for experimenting with AoPS Wiki editing.

Feel free to test formatting, links, or templates here. If you're new, you may find the AoPS Wiki editing tutorial helpful.

Note: This page is cleared regularly and without warning. Please do not add offensive, copyrighted, or inappropriate content.

Bobthesmartypants's Sandbox

Solution 1

[asy] path Q; Q=(0,0)--(1,2)--(5,2)--(4,0)--cycle; draw(Q); draw((0,0)--(1.5,1)); label("D",(0,0),S); draw((1,2)--(1.5,1)); label("A",(1,2),N); draw((5,2)--(1.5,1)); label("B",(5,2),N); draw((4,0)--(1.5,1)); label("C",(4,0),S); draw((2,0)--(1.5,1),linetype("8 8")); label("E",(2,0),S); draw((2/3,4/3)--(1.5,1),linetype("8 8")); label("F",(2/3,4/3),W); label("P",(1.5,1),NNE); [/asy]

First, continue $\overline{AP}$ to hit $\overline{CD}$ at $E$. Also continue $\overline{CP}$ to hit $\overline{AD}$ at $F$.

We have that $\angle PAB=\angle PCB$. Because $\overline{AB}\parallel\overline{CD}$, we have $\angle PAB=\angle PED$.

Similarly, because $\overline{AD}\parallel\overline{BC}$, we have $\angle PCB=\angle PFD$.

Therefore, $\angle PAB=\angle PED=\angle PCB=\angle PFD$.

We also have that $\angle ADC=\angle ABC$ because $ABCD$ is a parallelogram, and $\angle APC=\angle FPE$.

Therefore, $ABCP\sim FDEP$. This means that $\dfrac{FD}{AB}=\dfrac{FP}{AP}=\dfrac{DP}{BP}$, so $\Delta ABP\sim\Delta FDP$.

Therefore, $\angle PBA=\angle PDA$. $\Box$


Solution 2

Note that $\dfrac{1}{n}$ is rational and $n$ is not divisible by $2$ nor $5$ because $n>11$.

This means the decimal representation of $\dfrac{1}{n}$ is a repeating decimal.

Let us set $a_1a_2\cdots a_x$ as the block that repeats in the repeating decimal: $\dfrac{1}{n}=0.\overline{a_1a_2\cdots a_x}$.

($a_1a_2\cdots a_x$ written without the overline used to signify one number so won't confuse with notation for repeating decimal)

The fractional representation of this repeating decimal would be $\dfrac{1}{n}=\dfrac{a_1a_2\cdots a_x}{10^x-1}$.

Taking the reciprocal of both sides you get $n=\dfrac{10^x-1}{a_1a_2\cdots a_x}$.

Multiplying both sides by $a_1a_2\cdots a_n$ gives $n(a_1a_2\cdots a_x)=10^x-1$.

Since $10^x-1=9\times \underbrace{111\cdots 111}_{x\text{ times}}$ we divide $9$ on both sides of the equation to get $\dfrac{n(a_1a_2\cdots a_x)}{9}=\underbrace{111\cdots 111}_{x\text{ times}}$.

Because $n$ is not divisible by $3$ (therefore $9$) since $n>11$ and $n$ is prime, it follows that $n|\underbrace{111\cdots 111}_{x\text{ times}}$. $\Box$

Picture 1

[asy]draw(Circle((1,1),2)); draw(Circle((sqrt(2),sqrt(3)/2),1)); dot((8/5,2/5)); dot((1,1)); draw((1,1)--(8/5,2/5),linetype("8 8")); label("a",(6/5,7/10),SSW); draw((8/5,2/5)--(12/5,-2/5),linetype("8 8")); label("b",(2,0),SSW); [/asy] \[\text{Find the probability that }b>a \text{.}\]

[asy]unitsize(2inch); import olympiad; path c2 = dir(90)-dir(120)..dir(90)-dir(150)..dir(90)-dir(180); path c1 = dir(90)-dir(0)..dir(90)-dir(30)..dir(90)-dir(60); path c3 = dir(120)..dir(150)..dir(180); path c4 = dir(0)..dir(30)..dir(60);  draw(dir(0)..dir(30)..dir(60)..dir(90)..dir(120)..dir(150)..dir(180)--dir(0)); draw(dir(90)-dir(0)..dir(90)-dir(30)..dir(90)-dir(60)..dir(90)-dir(90)..dir(90)-dir(120)..dir(90)-dir(150)..dir(90)-dir(180)--dir(90)-dir(0)); draw((-1.2,0.8)--(1.2,0.8)); label("$l_{-n}$", (1.2,0.8),dir(0)); draw((-1.2,0.5)--(1.2,0.5)); label("$l_0$", (1.2,0.5),dir(0)); draw((-1.2,0.2)--(1.2,0.2)); label("$l_n$", (1.2,0.2),dir(0)); label("$\vdots$", (1.2, 0.4), dir(0)); label("$\vdots$", (0, 0.4)); label("$\vdots$", (1.2, 0.65), dir(0)); label("$\vdots$", (0, 0.65));  label("$A_{-n}$", intersectionpoint(c1, (-1.2, 0.8)--(1.2, 0.8)), dir(135)); label("$C_{-n}$", intersectionpoint(c3, (-1.2, 0.8)--(1.2, 0.8)), dir(135)); label("$D_{-n}$", intersectionpoint(c4, (-1.2, 0.8)--(1.2, 0.8)), dir(45)); label("$B_{-n}$", intersectionpoint(c2, (-1.2, 0.8)--(1.2, 0.8)), dir(45));  label("$X$", intersectionpoint(c1, (-1.2, 0.5)--(1.2, 0.5)), dir(150)); label("$Y$", intersectionpoint(c2, (-1.2, 0.5)--(1.2, 0.5)), dir(30));  label("$C_{n}$", intersectionpoint(c3, (-1.2, 0.2)--(1.2, 0.2)), dir(135)); label("$A_{n}$", intersectionpoint(c1, (-1.2, 0.2)--(1.2, 0.2)), dir(45)); label("$B_{n}$", intersectionpoint(c2, (-1.2, 0.2)--(1.2, 0.2)), dir(135)); label("$D_{n}$", intersectionpoint(c4, (-1.2, 0.2)--(1.2, 0.2)), dir(45));  dot(intersectionpoint(c1, (-1.2, 0.8)--(1.2, 0.8))); dot(intersectionpoint(c2, (-1.2, 0.8)--(1.2, 0.8))); dot(intersectionpoint(c3, (-1.2, 0.8)--(1.2, 0.8))); dot(intersectionpoint(c4, (-1.2, 0.8)--(1.2, 0.8)));  dot(intersectionpoint(c1, (-1.2, 0.5)--(1.2, 0.5))); dot(intersectionpoint(c2, (-1.2, 0.5)--(1.2, 0.5))); dot(intersectionpoint(c3, (-1.2, 0.5)--(1.2, 0.5))); dot(intersectionpoint(c4, (-1.2, 0.5)--(1.2, 0.5)));  dot(intersectionpoint(c1, (-1.2, 0.2)--(1.2, 0.2))); dot(intersectionpoint(c2, (-1.2, 0.2)--(1.2, 0.2))); dot(intersectionpoint(c3, (-1.2, 0.2)--(1.2, 0.2))); dot(intersectionpoint(c4, (-1.2, 0.2)--(1.2, 0.2))); [/asy]

Two half-circles are drawn as shown above, with a line $l_0$ throught the two intersections points, $X,Y$ of the half-circles. Lines $l_k$ for $k=-n\to n$ parallel to the bases of the half-circles are drawn such that the distances between $l_k$ and $l_0$ and $l_{-k}$ and $l_0$ are always the same for all $k=1\to n$.

The intersection points of $l_k$ with one of the half-circles are labeled $A_k, B_k$, and with the other half-circle at $C_k,D_k$, as shown in the diagram.

Prove that \[\prod_{k=-n}^n |A_kB_k|+|C_kD_k| \ge \prod_{k=-n}^n |A_kD_k|+|B_kC_k|\]

Picture 2

[asy] for (int i=0;i<6;i=i+1){ draw(dir(60*i)--dir(60*i+60)); } draw(dir(120)--(dir(0)+dir(-60))/2); draw(dir(180)--(dir(60)+dir(0))/2); fill(dir(120)--dir(180)--intersectionpoint(dir(120)--(dir(0)+dir(-60))/2,dir(180)--(dir(60)+dir(0))/2)--cycle,grey); fill((dir(0)+dir(-60))/2--dir(0)--(dir(60)+dir(0))/2--intersectionpoint(dir(120)--(dir(0)+dir(-60))/2,dir(180)--(dir(60)+dir(0))/2)--cycle,grey); [/asy] \[\text{Prove the shaded areas are equal.}\] [asy] for(int i = 0; i < 8; ++i){   for(int j = 0; j < 8; ++j){     filldraw((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--cycle,black);   } } for(int i = 1; i < 7; ++i){   filldraw((i,7-i)--(i+1,7-i)--(i+1,8-i)--(i,8-i)--cycle,white); } for(int i = 0; i < 5; ++i){   filldraw((i,4-i)--(i+1,4-i)--(i+1,5-i)--(i,5-i)--cycle,white); }  for(int i = 0; i < 5; ++i){   filldraw((8-i,4+i)--(7-i,4+i)--(7-i,3+i)--(8-i,3+i)--cycle,white); }  filldraw((1,0)--(2,0)--(2,1)--(1,1)--cycle,white); filldraw((0,1)--(0,2)--(1,2)--(1,1)--cycle,white); filldraw((7,8)--(6,8)--(6,7)--(7,7)--cycle,white); filldraw((8,7)--(8,6)--(7,6)--(7,7)--cycle,white); [/asy]

physics problem

[asy]size(100,100); draw((0,0)--(0,10)); draw(Circle((1,1),1)); dot((0,0)); draw(9.5*dir(80)..9.5*dir(70)..9.5*dir(60),EndArrow()); label("A",(-1,5),dir(180));[/asy]

[asy] size(85,85); draw((0,0)--10*dir(60)); draw(Circle((sqrt(3),1),1)); dot((0,0)); draw(9.5*dir(50)..9.5*dir(40)..9.5*dir(30),EndArrow()); label("B",(0,5),dir(0)); [/asy]

[asy] size(110,110); draw((0,0)--10*dir(11.42)); draw(Circle((10,1),1)); dot((0,0)); label("C",(5,1.5),dir(90)); [/asy]

Solution

[asy] import olympiad;   size(350,350); draw((0,0)--10*dir(60)); draw(Circle((sqrt(3),1),1)); dot((0,0)); draw((-1,0)--(7,0),grey); draw((0,0)--(sqrt(3),1),linetype("8 8")); draw((0,0)--(0,5),grey); draw(sqrt(3)*dir(60)--(sqrt(3),1)--(sqrt(3),0),linetype("8 8")); draw(anglemark((1,0),(0,0),dir(30))); label("$\varphi$",0.3*dir(15),dir(15)); draw(anglemark(dir(60),(0,0),(0,1))); label("$\theta$",0.3*dir(75),dir(75)); label("$1$",(sqrt(3),0.5),dir(0)); label("$\frac{1}{\tan\varphi}$",(sqrt(3)/2,0),dir(-90)); [/asy]

[asy] import olympiad;   size(300,300); draw((0,0)--10*dir(11.42)); draw(Circle((10,1),1)); dot((0,0)); draw((-1,0)--(12,0),grey); draw((0,0)--(0,3),grey); draw(anglemark(10*dir(11.42),(0,0),(0,1))); label("$\theta$",0.3*dir(50.71),dir(50.71)); draw((0,0)--(10,1),linetype("8 8")); draw(10*dir(11.42)--(10,1)--(10,0),linetype("8 8")); label("$1$",(10,0.5),dir(0)); label("$10$",(5,0),dir(-90)); label("$\varphi$",3.4*dir(2.855),dir(2.855)); markscalefactor=0.4; draw(anglemark((1,0),(0,0),dir(5.71))); [/asy]

inscribed triangle

[asy] draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); draw(dir(56)--dir(230),green); draw(dir(-23)--dir(-98),red);[/asy]

[asy] draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); draw(dir(0)--dir(36),red); draw(dir(0)--dir(72),red); draw(dir(0)--dir(108),red); draw(dir(0)--dir(144),green); draw(dir(0)--dir(180),green); draw(dir(0)--dir(216),green); draw(dir(0)--dir(-36),red); draw(dir(0)--dir(-72),red); draw(dir(0)--dir(-108),red); [/asy]

[asy] draw((dir(30)--dir(150)--dir(270)--dir(30)..dir(150)..dir(270)..dir(30)--cycle)); draw(dir(-72)--dir(180+72),red); draw(dir(-54)--dir(180+54),red); draw(dir(-36)--dir(180+36),red); draw(dir(-18)--dir(180+18),green); draw(dir(-0)--dir(180+0),green); draw(dir(72)--dir(180-72),red); draw(dir(54)--dir(180-54),red); draw(dir(36)--dir(180-36),red); draw(dir(18)--dir(180-18),green);  [/asy]

[asy] import olympiad; size(300);  draw(dir(0)..dir(60)..dir(120)..dir(180)--cycle); draw((0,0)--dir(30)--dir(150)--cycle); draw((0,0)--dir(90)); label("$r$",0.5*dir(30),dir(-60)); label("$r$",0.5*dir(150),dir(240)); label("$\frac{r}{2}$",0.25*dir(90),dir(0)); label("$\frac{r}{2}$",0.75*dir(90),dir(0)); markscalefactor=0.01; draw(anglemark(dir(90),(0,0),dir(150))); draw(anglemark((0,0),dir(150),dir(30))); draw(rightanglemark(dir(150),0.5*dir(90),(0,0))); label("$60^{\circ}$",0.07*dir(120),dir(120)); label("$30^{\circ}$",0.9*dir(150),dir(0));[/asy]

[asy]draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); draw(Circle((0,0),0.5)); draw(dir(0)--dir(45),red); dot((dir(0)+dir(45))/2,red); draw(dir(125)--dir(185),red); dot((dir(125)+dir(185))/2,red); draw(dir(240)--dir(325),red); dot((dir(240)+dir(325))/2,red); draw(dir(65)--dir(165),red); dot((dir(65)+dir(165))/2,red); draw(dir(200)--dir(254),red); dot((dir(200)+dir(254))/2,red); draw(dir(80)--dir(205),green); dot((dir(80)+dir(205))/2,green); draw(dir(200)--dir(345),green); dot((dir(200)+dir(345))/2,green); draw(dir(220)--dir(385),green); dot((dir(220)+dir(385))/2,green); draw(dir(-60)--dir(125),green); dot((dir(-60)+dir(125))/2,green); draw(dir(160)--dir(360),green); dot((dir(160)+dir(360))/2,green);[/asy]

[asy]draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); draw(Circle((0,0),0.5)); draw((0,0)--0.5*dir(-60)); draw((0,0)--dir(120)); label("$r$",0.25*dir(-60),dir(-150)); label("$R$",0.4*dir(120),dir(210)); dot((0,0));[/asy]

moar images

[asy] import olympiad; markscalefactor=0.01;  draw((-1,0)--(1,0)); draw((-1,0)--dir(30)--(1,0)); dot(incenter(dir(180),dir(30),dir(0))); draw(rightanglemark(dir(180),dir(30),dir(0)));  draw((-1,0)--dir(80)--(1,0)); dot(incenter(dir(180),dir(80),dir(0))); draw(rightanglemark(dir(180),dir(80),dir(0))); draw((-1,0)--dir(140)--(1,0)); dot(incenter(dir(180),dir(140),dir(0))); draw(rightanglemark(dir(180),dir(140),dir(0)));  draw((-1,0)--dir(200)--(1,0)); dot(incenter(dir(180),dir(200),dir(0))); draw(rightanglemark(dir(180),dir(200),dir(0)));  draw((-1,0)--dir(250)--(1,0)); dot(incenter(dir(180),dir(250),dir(0))); draw(rightanglemark(dir(180),dir(250),dir(0))); draw((-1,0)--dir(320)--(1,0)); dot(incenter(dir(180),dir(320),dir(0))); draw(rightanglemark(dir(180),dir(320),dir(0)));  label("$1$",(0,0),dir(90)); draw(Circle((0,0),1),linetype("8 8"));[/asy]


[asy] import olympiad; markscalefactor=0.01; draw((-1,0)--(1,0));  draw((-1,0)--dir(80)--(1,0)); dot(incenter(dir(180),dir(80),dir(0))); draw((-1,0)--incenter(dir(180),dir(80),dir(0))--(1,0),linetype("8 8")); draw(rightanglemark(dir(180),dir(80),dir(0)));  label("$A$",(-1,0),dir(180)); label("$B$",(1,0),dir(0)); label("$C$",dir(80),dir(90)); label("$I$",incenter(dir(180),dir(80),dir(0)),dir(90)); draw(Circle((0,0),1),linetype("8 8"));[/asy]

[asy] import olympiad; markscalefactor=0.01; draw((-1,0)--(1,0));  draw((-1,0)--dir(80)--(1,0)); dot(incenter(dir(180),dir(80),dir(0))); draw(rightanglemark(dir(180),dir(80),dir(0))); draw(dir(180)..incenter(dir(180),dir(80),dir(0))..dir(0)); draw(Circle((0,-1),sqrt(2)),linetype("8 8"));   draw(Circle((0,0),1),linetype("8 8"));[/asy]

[asy] import olympiad; markscalefactor=0.01;  fill(dir(0)..incenter(dir(180),dir(260),dir(0))..dir(180)--dir(180)..incenter(dir(180),dir(80),dir(0))..dir(0)--cycle,grey); draw((-1,0)--(1,0)); draw(dir(180)..incenter(dir(180),dir(80),dir(0))..dir(0)); draw(Circle((0,-1),sqrt(2))); draw(dir(180)..incenter(dir(180),dir(260),dir(0))..dir(0)); draw(Circle((0,1),sqrt(2))); draw(dir(0)--dir(90)--dir(180)--dir(-90)--cycle);[/asy]

yay

[asy] import olympiad;  draw(Circle((0,0),1)); draw((0,0)--dir(75)); draw((1.5,0)--(-1.5,0),grey); draw((0,1.5)--(0,-1.5),grey); markscalefactor=0.01; draw(anglemark(dir(0),(0,0),dir(75))); label("$\theta$",0.07*dir(37.5),dir(37.5)); draw(dir(180)--dir(75)--dir(0)); label("$P$",dir(75),dir(75)); label("$A$",dir(0),dir(0)); label("$B$",dir(180),dir(180));[/asy]

solution reflection

[asy]draw(dir(0)--(0,0)--dir(15)--(0,0)--dir(30)); draw(dir(0)--dir(15)--dir(30),linetype("8 8")); dot(0.75*dir(7)); draw(0.75*dir(7.5)--0.574*dir(15)--0.4*dir(0)); draw(0.574*dir(15)--0.4062*dir(30),linetype("8 8")); label("$A$",(0,0),dir(180)); label("$B$",dir(15),dir(15)); label("$C$",dir(0),dir(0)); label("$C'$",dir(30),dir(30));[/asy]


[asy] for(int i = 0; i < 60; ++i){   draw((0,0)--dir(6*i)); draw(dir(6*i)--dir(6*i+6),linetype("8 8")); } draw(1.2*dir(3)--1.2*dir(177)); label("Diagram not to Scale",dir(-90),dir(-90));[/asy]

origami

[asy]draw((1,1)--(-1,1)--(-1,-1)--(1,-1)--cycle); dot((0,0)); label("$O$",(0,0),dir(0)); dot((-0.5,0.75)); label("$P$",(-0.5,0.75),dir(0));[/asy]

[asy]draw((11/16,1)--(1,1)--(1,-1)--(-1,-1)--(-1,-1/8)); draw((-1,-1/8)--(-1,1)--(11/16,1),linetype("8 8")); dot((0,0)); label("$O$",(0,0),dir(0)); dot((-0.5,0.75)); label("$P$",(-0.5,0.75),dir(0)); draw((-1,-1/8)--(11/16,1)--(1/26,-29/52)--cycle); draw((-0.5,0.7)..(-0.3,0.3)..(-0.05,0.05),Arrow());[/asy]

combos

[asy]label("$C$",(0,0)); label("$C$",(1,-1)); label("$O$",(1,0)); label("$O$",(2,-1)); label("$O$",(0,1)); label("$M$",(2,0)); label("$M$",(1,1)); label("$M$",(0,2)); label("$M$",(3,-1)); label("$B$",(3,0)); label("$B$",(2,1)); label("$B$",(1,2)); label("$B$",(0,3)); label("$B$",(4,-1)); label("$O$",(4,0)); label("$O$",(3,1)); label("$O$",(2,2)); label("$O$",(1,3)); label("$O$",(0,4)); label("$O$",(5,-1)); label("$*$",(0,-1)); [/asy]

circles

[asy] draw(Circle((0,0),3.5)); draw((-3.5,0)--(3.5,0)); label("7", (0,0), dir(90)); dot((0,0)); draw(Circle((-2,1.4),1)); draw((-2,1.4)--(-1,1.4)); label("1", (-1.5,1.4),dir(90)); [/asy]

more circles

[asy] draw(Circle((0,0),20)); draw(Circle((0,0),14)); dot((0,0)); dot(20*dir(60)); dot(14*dir(180)); dot((-17,29.445)); draw(20*dir(60)--14*dir(180)--(-17,29.445)--cycle); label("O",(0,0),dir(0)); label("A",20*dir(60),dir(60)); label("B",(-14,0),dir(180)); label("P",(-17,29.445),dir(180)); draw((-17,29.445)--(0,0),red); [/asy]

checkerboasrd

[asy] for(int i = 0; i < 8; ++i){ for(int j = 0; j < 8; ++j){ filldraw((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--cycle,gray((i%3+3*(j%3))/8)); } }  [/asy]

Fermat point

[asy] import math;  draw((0,0)--(4,0)--(0,3)--cycle); draw((0,0)--3*dir(30)--4*dir(-60)--cycle); draw((4,0)--4*dir(60)--(4*dir(60)+3*dir(30))--cycle); draw((0,3)--3*dir(150)--(3*dir(150)+4*dir(-60))--cycle);  draw((0,0)--(4*dir(60)+3*dir(30)),blue+linetype("8 8")); draw((0,3)--4*dir(-60),blue+linetype("8 8")); draw((4,0)--3*dir(150),blue+linetype("8 8"));  draw((0,0)--(3*dir(150)+4*dir(-60)),red+linetype("8 8 0 8")); draw((0,3)--4*dir(60),red+linetype("8 8 0 8")); draw((4,0)--3*dir(30),red+linetype("8 8 0 8"));[/asy]

cenn driagrma

[asy] draw(Circle((1,0),2)); draw(Circle((-1,0),2)); label("3",(0,0)); label("2", (2,0)); label("2", (-2,0)); label("Spotted",(-2,2),dir(90)); label("5 Legs",(2,2),dir(90)); [/asy]

cyclic square

[asy] draw(Circle((0,0),0.5)); draw(0.5*dir(15)--0.5*dir(105)--0.5*dir(195)--0.5*dir(285)--cycle); label(scale(6)*"CS",(0,0)); [/asy]

[asy] import olympiad;  size(10cm); draw(Circle((-5,0),4)); fill((0,0)--(-10,-1)--(-10,-5)--(0,-5)--cycle,white); dot(4*dir(60)-5); dot(4*dir(30)-5); dot(4*dir(100)-5); dot(4*dir(150)-5); label(scale(5)*"Cyclic Squares",(0,0)); draw((-0.75,2)--(-0.25,-2)--(9.25,-0.9)--(9,1.1)); draw(rightanglemark((-0.75,2),(-0.25,-2),(9.25,-0.9))); draw(rightanglemark((-0.25,-2),(9.25,-0.9),(9,1.1))); [/asy]


diagram

\[\text{Given that }\theta\le 90^{\circ}\text{, prove }a^2+b^2\le D^2\text{, where }D\text{ is the diameter of the circle.}\] [asy] draw(Circle((0,0),1)); draw(dir(0)--dir(40)--dir(170)--dir(260)--dir(0)--dir(170)--dir(260)--dir(40));  label("$\theta$", extension(dir(0),dir(170),dir(40),dir(260))-0.05*dir(30),-dir(30)); label("a",(dir(170)+dir(260))/2,dir(215)); label("b",(dir(0)+dir(40))/2,-dir(20));  [/asy]

Cyclic squares DOTS DTOS TDORS

[asy] draw(Circle((0,0),90));  draw(Circle((30,40),10));  dot((37,38));  dot((25,39));  dot((20,30),gray(0.5));  dot((22,54),gray(0.6)); dot((36,27),gray(0.5)); dot((38,50),gray(0.4));  dot((10,36),gray(0.8));  dot((50,40),gray(0.75));  dot((30,20),gray(0.7));  dot((0,54),gray(0.85)); dot((4,23),gray(0.85)); dot((60,25),gray(0.9)); dot((30,70),gray(0.9)); [/asy]