Vieta's formulas

Theorem 14.1.4 (Vieta’s Formula For Higher Degree Polynomials) In a polynomial $a_n x^n + a_{n-1} x ^ {n-1} ..... a_1 x^{1} + a_0$ with roots $r_1 r_2 r_3 ... r_n$

the following holds:

\[r_1 + r_2 + r_3 + \cdots + r_n = -\frac{a_{n-1}}{a_n}\] \[r_1r_2 + r_1r_3 + \cdots + r_{n-1}r_n = \frac{a_{n-2}}{a_n}\] \[r_1r_2r_3 + r_1r_2r_4 + \cdots + r_{n-2}r_{n-1}r_n = -\frac{a_{n-3}}{a_n}\] \[\cdots\] \[r_1r_2r_3 \cdots r_n = (-1)^n \frac{a_0}{a_n}\]


Note that the negative and positive signs alternate. When summing the products for odd number of terms, we will have a negative sign otherwise we will have a positive sign.