Difference between revisions of "Newton's Sums"
m (→Example) |
(→Practice) |
||
| Line 100: | Line 100: | ||
==Practice== | ==Practice== | ||
| − | 2019 AMC 12A | + | [https://artofproblemsolving.com/wiki/index.php/2019_AMC_12A_Problems/Problem_17 2019 AMC 12A Problem 17] |
==See Also== | ==See Also== | ||
Revision as of 12:59, 31 July 2020
Newton sums give us a clever and efficient way of finding the sums of roots of a polynomial raised to a power. They can also be used to derive several factoring identities.
Contents
Statement
Consider a polynomial
of degree
,
Let
have roots
. Define the following sums:
Newton sums tell us that,
(Define
for
.)
We also can write:
etc., where
denotes the
-th elementary symmetric sum.
Proof
Let
be the roots of a given polynomial
. Then, we have that
Thus,
Multiplying each equation by
, respectively,
Sum,
Therefore,
Example
For a more concrete example, consider the polynomial
. Let the roots of
be
and
. Find
and
.
Newton's Sums tell us that:
Solving, first for
, and then for the other variables, yields,
Which gives us our desired solutions,
and
.