Difference between revisions of "1982 AHSME Problems/Problem 30"
MRENTHUSIASM (talk | contribs) |
MRENTHUSIASM (talk | contribs) |
||
| Line 12: | Line 12: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
A^{19}+B^{19} &= \left[\binom{19}{0}15^{19}\sqrt{220}^0+\binom{19}{1}15^{18}\sqrt{220}^1+\cdots+\binom{19}{19}15^0\sqrt{220}^{19}\right] + \left[\binom{19}{0}15^{19}\sqrt{220}^0-\binom{19}{1}15^{18}\sqrt{220}^1+\cdots-\binom{19}{19}15^0\sqrt{220}^{19}\right] \\ | A^{19}+B^{19} &= \left[\binom{19}{0}15^{19}\sqrt{220}^0+\binom{19}{1}15^{18}\sqrt{220}^1+\cdots+\binom{19}{19}15^0\sqrt{220}^{19}\right] + \left[\binom{19}{0}15^{19}\sqrt{220}^0-\binom{19}{1}15^{18}\sqrt{220}^1+\cdots-\binom{19}{19}15^0\sqrt{220}^{19}\right] \\ | ||
| − | &= 2\left[\binom{19}{0}15^{19}\sqrt{220}^0+\binom{19}{2}15^{17}\sqrt{220}^2+\cdots+\binom{19}{18}15^1\sqrt{220}^{18}\right]. | + | &= 2\left[\binom{19}{0}15^{19}\sqrt{220}^0+\binom{19}{2}15^{17}\sqrt{220}^2+\cdots+\binom{19}{18}15^1\sqrt{220}^{18}\right] \\ |
| + | &= 2\left[\binom{19}{0}15^{19}+\binom{19}{2}15^{17}220+\cdots+\binom{19}{18}15^1 220^9\right]. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
| + | Similarly, we have <cmath>A^{82}+B^{82}=2\left[\binom{82}{0}15^{82}+\binom{82}{2}15^{80}220+\cdots+\binom{82}{82}220^{41}\right].</cmath> | ||
== See Also == | == See Also == | ||
{{AHSME box|year=1982|num-b=29|after=Last Problem}} | {{AHSME box|year=1982|num-b=29|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 23:08, 11 September 2021
Problem
Find the units digit of the decimal expansion of
Solution
Let
and
Note that
and
are both integers: When we expand (Binomial Theorem) and combine like terms for each expression, the rational terms are added and the irrational terms are canceled. We have
Similarly, we have
See Also
| 1982 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 29 |
Followed by Last Problem | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.