Difference between revisions of "Talk:1960 IMO Problems/Problem 3"

(A proof of the 3rd question from the 1960 IMO: new section)
 
(A proof of the 3rd question from the 1960 IMO)
Line 1: Line 1:
== A proof of the 3rd question from the 1960 IMO ==
 
  
\documentclass{article}
+
 
\usepackage{amsmath}
+
\section*{Proof for 1960 IMO Problem 3}
\begin{document}
 
  
 
Let \( \angle ACB = x \) and \( \angle ABC = 90^\circ - x \).   
 
Let \( \angle ACB = x \) and \( \angle ABC = 90^\circ - x \).   
 
Let \( M \) be the midpoint of the hypotenuse \( BC \), and let \( Q \) and \( P \) be points such that \( PQ \) contains \( BC \), with \( Q \) closer to \( C \) and \( P \) closer to \( B \).   
 
Let \( M \) be the midpoint of the hypotenuse \( BC \), and let \( Q \) and \( P \) be points such that \( PQ \) contains \( BC \), with \( Q \) closer to \( C \) and \( P \) closer to \( B \).   
The midpoint \( M \) will always be in the middle of segment \( QP \), unless \( n \) is even or infinite, which it is not.   
+
Since \( BC \) is divided into \( n \) equal parts, where \( n \) is odd, the length of each segment is:
 +
 
 +
\[
 +
\frac{a}{n}
 +
\]
 +
 
 +
Because \( M \) is the midpoint of \( BC \), it must lie between two consecutive division points, meaning \( M \) is at the center of segment \( QP \).   
 +
 
 +
### Step 1: Altitude to the Hypotenuse 
 +
From right triangle trigonometry, the altitude to the hypotenuse is given by:
  
Given such a triangle, we can express the altitude to the hypotenuse as:
 
 
\[
 
\[
 
h = a \cos x \sin x
 
h = a \cos x \sin x
 
\]
 
\]
  
Now, let us denote the median \( AM \) by \( f \). Since \( AM \) is the median to the hypotenuse, we have:
+
### Step 2: Median to the Hypotenuse 
 +
Since \( AM \) is the median to the hypotenuse, we have:
 +
 
 
\[
 
\[
AM = BM = CM
+
AM = BM = CM = \frac{a}{2}
 
\]
 
\]
Since \( BM = \frac{a}{2} \), it follows that \( f = \frac{a}{2} \). 
 
  
Angles in the triangle give us:
+
We also know that:
 +
 
 
\[
 
\[
 
\angle MAB = 90^\circ - x, \quad \angle MAC = x
 
\angle MAB = 90^\circ - x, \quad \angle MAC = x
Line 28: Line 36:
 
\]
 
\]
  
The length of \( QP \) is given by:
+
### Step 3: Length of \( QP \) and Triangle Relations 
 +
The length of \( QP \) is:
 +
 
 
\[
 
\[
 
QP = \frac{a}{n}
 
QP = \frac{a}{n}
 
\]
 
\]
  
Define \( \angle QAM = k \) and \( \angle PAM = z \), so that:
+
Define:
 +
 
 
\[
 
\[
\angle QAP = \alpha = k + z
+
\angle QAM = k, \quad \angle PAM = z, \quad \angle QAP = \alpha = k + z
 
\]
 
\]
From angle properties, we get:
+
 
 +
From angle properties:
 +
 
 
\[
 
\[
 
\angle AQM = 2x - k, \quad \angle APM = 180^\circ - 2x - z
 
\angle AQM = 2x - k, \quad \angle APM = 180^\circ - 2x - z
 
\]
 
\]
  
Since \( M \) is the midpoint of \( QP \), we know:
+
Since \( M \) is the midpoint of \( QP \), we have:
 +
 
 
\[
 
\[
 
QM = PM = \frac{a}{2n}
 
QM = PM = \frac{a}{2n}
 
\]
 
\]
  
### Applying the Sine Rule in \( \triangle AQM \):
+
### Step 4: Applying the Law of Sines 
 +
Applying the sine rule in \( \triangle AQM \):
 +
 
 
\[
 
\[
 
\frac{\sin k}{a/2n} = \frac{\sin(2x - k)}{a/2}
 
\frac{\sin k}{a/2n} = \frac{\sin(2x - k)}{a/2}
 
\]
 
\]
  
Rearranging:
+
Multiplying both sides by \( \frac{2}{a} \):
 +
 
 
\[
 
\[
 
\frac{2n \sin k}{a} = \frac{2 \sin(2x - k)}{a}
 
\frac{2n \sin k}{a} = \frac{2 \sin(2x - k)}{a}
 
\]
 
\]
 +
 +
which simplifies to:
  
 
\[
 
\[
Line 61: Line 80:
 
\]
 
\]
  
Using the sine subtraction identity:
+
Using the identity:
 +
 
 
\[
 
\[
 
\sin(2x - k) = \sin 2x \cos k - \sin k \cos 2x
 
\sin(2x - k) = \sin 2x \cos k - \sin k \cos 2x
 
\]
 
\]
  
Since \( \sin 2x = 2 \sin x \cos x \) and given that \( h = a \cos x \sin x \), we can substitute:
+
and the double-angle formula:
 +
 
 
\[
 
\[
2 \sin x \cos x = \frac{2h}{a}
+
\sin 2x = 2 \sin x \cos x = \frac{2h}{a}
 
\]
 
\]
 +
 +
we substitute:
 +
 
\[
 
\[
 
\cos 2x = \frac{\sqrt{a^2 - 4h^2}}{a}
 
\cos 2x = \frac{\sqrt{a^2 - 4h^2}}{a}
 
\]
 
\]
  
Substituting in our equation:
+
into our equation:
 +
 
 
\[
 
\[
 
n \sin k + \sin k \frac{\sqrt{a^2 - 4h^2}}{a} = \cos k \frac{2h}{a}
 
n \sin k + \sin k \frac{\sqrt{a^2 - 4h^2}}{a} = \cos k \frac{2h}{a}
 
\]
 
\]
  
Factorizing:
+
Factoring:
 +
 
 
\[
 
\[
\sin k \left(n + \frac{\sqrt{a^2 - 4h^2}}{a} \right) = \cos k \frac{2h}{a}
+
\sin k \left( n + \frac{\sqrt{a^2 - 4h^2}}{a} \right) = \cos k \frac{2h}{a}
 
\]
 
\]
  
 
Dividing both sides by \( \cos k \):
 
Dividing both sides by \( \cos k \):
 +
 
\[
 
\[
 
\tan k = \frac{2h}{an + \sqrt{a^2 - 4h^2}}
 
\tan k = \frac{2h}{an + \sqrt{a^2 - 4h^2}}
 
\]
 
\]
  
Similarly, solving for \( \tan z \), we can apply the tangent sum identity:
+
### Step 5: Finding \( \tan \alpha \) 
 +
Using a similar derivation for \( \tan z \), we apply the tangent sum identity:
 +
 
 
\[
 
\[
 
\tan (z + k) = \frac{\tan z + \tan k}{1 - \tan z \tan k}
 
\tan (z + k) = \frac{\tan z + \tan k}{1 - \tan z \tan k}
 
\]
 
\]
to find the value of \( \tan \alpha \), where \( \alpha = z + k \).
 
  
\end{document}
+
to find \( \tan \alpha \), where \( \alpha = z + k \).

Revision as of 10:18, 5 March 2025


\section*{Proof for 1960 IMO Problem 3}

Let \( \angle ACB = x \) and \( \angle ABC = 90^\circ - x \). Let \( M \) be the midpoint of the hypotenuse \( BC \), and let \( Q \) and \( P \) be points such that \( PQ \) contains \( BC \), with \( Q \) closer to \( C \) and \( P \) closer to \( B \). Since \( BC \) is divided into \( n \) equal parts, where \( n \) is odd, the length of each segment is:

\[ \frac{a}{n} \]

Because \( M \) is the midpoint of \( BC \), it must lie between two consecutive division points, meaning \( M \) is at the center of segment \( QP \).

      1. Step 1: Altitude to the Hypotenuse

From right triangle trigonometry, the altitude to the hypotenuse is given by:

\[ h = a \cos x \sin x \]

      1. Step 2: Median to the Hypotenuse

Since \( AM \) is the median to the hypotenuse, we have:

\[ AM = BM = CM = \frac{a}{2} \]

We also know that:

\[ \angle MAB = 90^\circ - x, \quad \angle MAC = x \] \[ \angle AMB = 2x, \quad \angle AMC = 180^\circ - 2x \]

      1. Step 3: Length of \( QP \) and Triangle Relations

The length of \( QP \) is:

\[ QP = \frac{a}{n} \]

Define:

\[ \angle QAM = k, \quad \angle PAM = z, \quad \angle QAP = \alpha = k + z \]

From angle properties:

\[ \angle AQM = 2x - k, \quad \angle APM = 180^\circ - 2x - z \]

Since \( M \) is the midpoint of \( QP \), we have:

\[ QM = PM = \frac{a}{2n} \]

      1. Step 4: Applying the Law of Sines

Applying the sine rule in \( \triangle AQM \):

\[ \frac{\sin k}{a/2n} = \frac{\sin(2x - k)}{a/2} \]

Multiplying both sides by \( \frac{2}{a} \):

\[ \frac{2n \sin k}{a} = \frac{2 \sin(2x - k)}{a} \]

which simplifies to:

\[ n \sin k = \sin(2x - k) \]

Using the identity:

\[ \sin(2x - k) = \sin 2x \cos k - \sin k \cos 2x \]

and the double-angle formula:

\[ \sin 2x = 2 \sin x \cos x = \frac{2h}{a} \]

we substitute:

\[ \cos 2x = \frac{\sqrt{a^2 - 4h^2}}{a} \]

into our equation:

\[ n \sin k + \sin k \frac{\sqrt{a^2 - 4h^2}}{a} = \cos k \frac{2h}{a} \]

Factoring:

\[ \sin k \left( n + \frac{\sqrt{a^2 - 4h^2}}{a} \right) = \cos k \frac{2h}{a} \]

Dividing both sides by \( \cos k \):

\[ \tan k = \frac{2h}{an + \sqrt{a^2 - 4h^2}} \]

      1. Step 5: Finding \( \tan \alpha \)

Using a similar derivation for \( \tan z \), we apply the tangent sum identity:

\[ \tan (z + k) = \frac{\tan z + \tan k}{1 - \tan z \tan k} \]

to find \( \tan \alpha \), where \( \alpha = z + k \).