Difference between revisions of "1981 AHSME Problems/Problem 17"
(→Solution) |
J314andrews (talk | contribs) (added navbox) |
||
| (7 intermediate revisions by one other user not shown) | |||
| Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
| − | Substitute <math>x</math> with <math>\frac{1}{x}</math> | + | Substitute <math>x</math> with <math>\frac{1}{x}</math>: |
| − | <math>f(\frac{1}{x})+2f(x)=\frac{3}{x}</math> | + | <math>f\left(\frac{1}{x}\right)+2f(x)=\frac{3}{x}</math>. |
Adding this to <math>f(x)+2f\left(\dfrac{1}x\right)=3x</math>, we get | Adding this to <math>f(x)+2f\left(\dfrac{1}x\right)=3x</math>, we get | ||
| Line 14: | Line 14: | ||
<math>3f(x)+3f\left(\dfrac{1}x\right)=3x+\frac{3}{x}</math>, or | <math>3f(x)+3f\left(\dfrac{1}x\right)=3x+\frac{3}{x}</math>, or | ||
| − | <math>f(x)+f\left(\dfrac{1}x\right)=x+\frac{1}{x}</math> | + | <math>f(x)+f\left(\dfrac{1}x\right)=x+\frac{1}{x}</math>. |
Subtracting this from <math>f(\frac{1}{x})+2f(x)=\frac{3}{x}</math>, we have | Subtracting this from <math>f(\frac{1}{x})+2f(x)=\frac{3}{x}</math>, we have | ||
| + | <math>f(x)=\frac{2}{x}-x</math>. | ||
| − | <math>f(x)=\frac{2}{x}-x</math> | + | Then, <math>f(x)=f(-x)</math> when <math>\frac{2}{x}-x=\frac{2}{-x}+x</math> or |
| + | |||
| + | <math>\frac{2}{x}-x=0</math>, so <math>x=\pm{\sqrt2}</math> are the two real solutions and the answer is <math>\boxed{(B)}</math>. | ||
| + | |||
| + | ==See also== | ||
| + | |||
| + | {{AHSME box|year=1981|num-b=16|num-a=18}} | ||
| + | {{MAA Notice}} | ||
Latest revision as of 13:11, 28 June 2025
Problem
The function
is not defined for
, but, for all non-zero real numbers
,
. The equation
is satisfied by
Solution
Substitute
with
:
.
Adding this to
, we get
, or
.
Subtracting this from
, we have
.
Then,
when
or
, so
are the two real solutions and the answer is
.
See also
| 1981 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 16 |
Followed by Problem 18 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.