Difference between revisions of "1982 AHSME Problems/Problem 13"
Mohittomar (talk | contribs) (Created page with "p (log <sub> b</sub> a) = log <sub>b </sub> (log <sub> b</sub> a) log <sub> b</sub> (a<sup> p</sup> =log <sub> b </sub> (log<sub>b</sub> a) a<sup>p</sup> = log <sub> b</sub> a") |
J314andrews (talk | contribs) (→Solution 2) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | |||
+ | If <math>a>1, b>1</math>, and <math>p=\frac{\log_b(\log_ba)}{\log_ba}</math>, then <math>a^p</math> equals | ||
+ | |||
+ | <math>\textbf {(A)}\ 1 \qquad | ||
+ | \textbf {(B)}\ b \qquad | ||
+ | \textbf {(C)}\ \log_ab \qquad | ||
+ | \textbf {(D)}\ \log_ba \qquad | ||
+ | \textbf {(E)}\ a^{\log_ba} </math> | ||
+ | |||
+ | ==Solution 1== | ||
p (log <sub> b</sub> a) = log <sub>b </sub> (log <sub> b</sub> a) | p (log <sub> b</sub> a) = log <sub>b </sub> (log <sub> b</sub> a) | ||
− | log <sub> b</sub> (a<sup> p</sup> =log <sub> b </sub> (log<sub>b</sub> a) | + | |
+ | log <sub> b</sub> (a<sup> p</sup>) =log <sub> b </sub> (log<sub>b</sub> a) | ||
+ | |||
a<sup>p</sup> = log <sub> b</sub> a | a<sup>p</sup> = log <sub> b</sub> a | ||
+ | |||
+ | ==Solution 2== | ||
+ | Notice that <math>\frac{\log_b(\log_ba)}{\log_ba}</math> strongly resembles the change of base rule. Recall that <math>\log_ba=\frac{\log_ca}{\log_cb}</math>. Taking the base on the RHS to be <math>b</math>, we get that <math>p = \log_a(\log_ba)</math>. Raising <math>a</math> to both sides, we get that <cmath>a^p = a^{\log_a(\log_ba)}</cmath> <cmath>= \boxed{\textbf{(D)} ~ \log_ba}</cmath> | ||
+ | |||
+ | ~ cxsmi | ||
+ | |||
+ | ==See Also== | ||
+ | {{AHSME box|year=1982|num-b=12|num-a=14}} | ||
+ | |||
+ | {{MAA Notice}} |
Latest revision as of 23:11, 29 June 2025
Contents
Problem
If , and
, then
equals
Solution 1
p (log b a) = log b (log b a)
log b (a p) =log b (logb a)
ap = log b a
Solution 2
Notice that strongly resembles the change of base rule. Recall that
. Taking the base on the RHS to be
, we get that
. Raising
to both sides, we get that
~ cxsmi
See Also
1982 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.