Difference between revisions of "1982 AHSME Problems/Problem 14"
m (→Solution) |
J314andrews (talk | contribs) (→Solution) |
||
(One intermediate revision by one other user not shown) | |||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | Drop a perpendicular from <math>N</math> to <math>AG</math> at point <math>H</math>. <math>AN=45</math>, and since <math>\triangle{AGP}</math> is similar to <math>\triangle{AHN}</math>. <math>NH=9</math>. <math>NE=NF=15</math> so by the Pythagorean Theorem, <math>EH=HF=12</math>. Thus <math>EF=\boxed{24.}</math> Answer is then <math>\boxed{C}</math>. | + | Drop a perpendicular line from <math>N</math> to <math>AG</math> at point <math>H</math>. <math>AN=45</math>, and since <math>\triangle{AGP}</math> is similar to <math>\triangle{AHN}</math>. <math>NH=9</math>. <math>NE=NF=15</math> so by the Pythagorean Theorem, <math>EH=HF=12</math>. Thus <math>EF=\boxed{24.}</math> Answer is then <math>\boxed{C}</math>. |
+ | |||
+ | ==See Also== | ||
+ | {{AHSME box|year=1982|num-b=13|num-a=15}} | ||
+ | |||
+ | {{MAA Notice}} |
Latest revision as of 23:29, 29 June 2025
Problem 14
In the adjoining figure, points and
lie on line segment
, and
, and
are diameters of circle
, and
, respectively. Circles
, and
all have radius
and the line
is tangent to circle
at
. If
intersects circle
at points
and
, then chord
has length
Solution
Drop a perpendicular line from to
at point
.
, and since
is similar to
.
.
so by the Pythagorean Theorem,
. Thus
Answer is then
.
See Also
1982 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.