Difference between revisions of "2018 MPFG Problem 19"

(Solution 1)
(Solution 1)
Line 15: Line 15:
 
[[File:Right_rie.jpg|750px|center]]
 
[[File:Right_rie.jpg|750px|center]]
  
<cmath>2S_n > \int{f_{1}^{9803}(\frac{1}{\sqrt{x}})}dx</cmath>
+
<cmath>2S_n > \int_{1}^{9803} \frac{1}{\sqrt{x}} \,dx</cmath>
  
 
<cmath>2S_n > \left. (2x^{\frac{1}{2}})\right|_{1}^{9803}</cmath>
 
<cmath>2S_n > \left. (2x^{\frac{1}{2}})\right|_{1}^{9803}</cmath>
Line 27: Line 27:
 
[[File:Left_rie.jpg|750px|center]]
 
[[File:Left_rie.jpg|750px|center]]
  
<cmath>2S_n-1 < \int{f_{1}^{9801}(\frac{1}{\sqrt{x}})}dx</cmath>
+
<cmath>2S_n-1 < \int_{1}^{9801} \frac{1}{\sqrt{x}} \,dx</cmath>
  
 
<cmath>2S_n-1 < \left. (2x^{\frac{1}{2}})\right|_{1}^{9801}</cmath>
 
<cmath>2S_n-1 < \left. (2x^{\frac{1}{2}})\right|_{1}^{9801}</cmath>

Revision as of 09:01, 24 August 2025

Problem 19

Consider the sum

\[S_n = \sum_{k=1}^{n}\frac{1}{\sqrt{2k-1}}\]

Determine $\lfloor S_{4901} \rfloor$. Recall that if $x$ is a real number, then $\lfloor x \rfloor$ (the floor of x) is the greatest integer that is less than or equal to $x$.

Solution 1

We can think of this problem through integration perspectives. Observe that $S_n$ looks very similar to a Riemann sum.

\[_n = 1/\sqrt{1}+1/\sqrt{3}+ ... + 1/\sqrt{9801}\]

We first applicate the right Riemann sum of $y=\frac{1}{\sqrt{x}}$

Right rie.jpg

\[2S_n > \int_{1}^{9803} \frac{1}{\sqrt{x}} \,dx\]

\[2S_n > \left. (2x^{\frac{1}{2}})\right|_{1}^{9803}\]

\[2S_n > 2(\sqrt{9803}-1)\]

\[S_n > \sqrt{9803}-1\]

Then applicate the left Riemann sum of $y=\frac{1}{\sqrt{x}}$

Left rie.jpg

\[2S_n-1 < \int_{1}^{9801} \frac{1}{\sqrt{x}} \,dx\]

\[2S_n-1 < \left. (2x^{\frac{1}{2}})\right|_{1}^{9801}\]

\[S_n-\frac{1}{2} > \sqrt{9801}-1\]

\[S_n < \sqrt{9801}-\frac{1}{2}\]


We conclude that:

$\sqrt{9803}-1 < S_n < \sqrt{9801}-\frac{1}{2}$

$\lfloor S_n \rfloor = \boxed{98}$

~cassphe