Difference between revisions of "2022 SSMO Speed Round Problems/Problem 3"
(Created page with "==Problem== Pigs like to eat carrots. Suppose a pig randomly chooses 6 letters from the set <math>\{c,a,r,o,t\}.</math> Then, the pig randomly arranges the 6 letters to form a...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | ||
+ | Let <math>ABCD</math> be a parallelogram such that <math>E</math> is a point on <math>CD</math> such that <math>\frac{CE}{DE}=\frac{2}{3}.</math> Suppose that <math>BE</math> and <math>AC</math> intersect at <math>F.</math> If the area of triangle <math>AEF</math> is <math>15,</math> find the area of <math>ABCD</math>. | ||
==Solution== | ==Solution== | ||
− | We | + | We have |
− | + | <cmath>\begin{align*} | |
− | === | + | [AEF] &= [AEC]-[CEF]\\ |
− | + | &= \frac{CE}{CD}\cdot[ACD]-\frac{CE}{CD}\cdot\frac{CE}{CE+AB}\cdot[ACD]\\ | |
− | + | &= \frac{CE}{CE+DE}\cdot[ACD]-\frac{CE}{CE+DE}\cdot\frac{CE}{CE+CD}\cdot[ACD]\\ | |
− | + | &= \frac{2}{2+3}\cdot[ACD]-\frac{2}{2+3}\cdot\frac{CE}{CE+(CE+DE)}\cdot[ACD]\\ | |
− | + | &= \frac{2}{5}\cdot[ACD]-\frac{2}{5}\cdot\frac{2}{2+(2+3)}\cdot[ACD]\\ | |
− | + | &= \left(\frac{2}{5}-\frac{2}{5}\cdot\frac{2}{7}\right)[ACD]\\ | |
− | + | &= \frac{2}{7}[ACD] = \frac{2}{7}\cdot\frac{1}{2}\cdot[ABCD] = \frac{1}{7}[ABCD]\implies\\ | |
− | + | [ABCD] &= 7[AEF] = 7\cdot15 = \boxed{105}. | |
− | == | + | \end{align*}</cmath> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ~pinkpig | |
− | |||
− | |||
− | |||
− |
Latest revision as of 17:18, 13 September 2025
Problem
Let be a parallelogram such that
is a point on
such that
Suppose that
and
intersect at
If the area of triangle
is
find the area of
.
Solution
We have
~pinkpig