Difference between revisions of "1952 AHSME Problems/Problem 43"

(Solution)
(Problem)
 
(One intermediate revision by one other user not shown)
Line 2: Line 2:
  
 
The diameter of a circle is divided into <math>n</math> equal parts. On each part a semicircle is constructed. As <math>n</math> becomes very large, the sum of the lengths of the arcs of the semicircles approaches a length:  
 
The diameter of a circle is divided into <math>n</math> equal parts. On each part a semicircle is constructed. As <math>n</math> becomes very large, the sum of the lengths of the arcs of the semicircles approaches a length:  
 +
 
<math>\textbf{(A) } \qquad</math> equal to the semi-circumference of the original circle
 
<math>\textbf{(A) } \qquad</math> equal to the semi-circumference of the original circle
 
<math>\textbf{(B) } \qquad</math> equal to the diameter of the original circle
 
<math>\textbf{(B) } \qquad</math> equal to the diameter of the original circle
Line 9: Line 10:
  
 
== Solution ==
 
== Solution ==
Note that the circumference of a circle is <math>\pi*d</math>.  
+
Note that the half the circumference of a circle with diameter <math>d</math> is <math>\frac{\pi*d}{2}</math>.  
  
Let's call the diameter of the circle D. Dividing the circle's diameter into n parts means that each semicircle has diameter <math>\frac{D}{n}.</math> Since there are n circles, each with diameter <math>\frac{D}{n}</math>, the sum of the circumferences of the small circles is D. Since we are only drawing semicircles and not full circles, the requested sum is
+
Let's call the diameter of the circle D. Dividing the circle's diameter into n parts means that each semicircle has diameter <math>\frac{D}{n}</math>, and thus each semicircle measures <math>\frac{D*pi}{n*2}</math>. The total sum of those is <math>n*\frac{D*pi}{n*2}=\frac{D*pi}{2}</math>, and since that is the exact expression for the semi-circumference of the original circle, the answer is <math>\boxed{A}</math>.
<math>\boxed{A}</math>.
 
  
 
== See also ==
 
== See also ==

Latest revision as of 12:28, 29 December 2024

Problem

The diameter of a circle is divided into $n$ equal parts. On each part a semicircle is constructed. As $n$ becomes very large, the sum of the lengths of the arcs of the semicircles approaches a length:

$\textbf{(A) } \qquad$ equal to the semi-circumference of the original circle $\textbf{(B) } \qquad$ equal to the diameter of the original circle $\textbf{(C) } \qquad$ greater than the diameter, but less than the semi-circumference of the original circle $\textbf{(D) }  \qquad$ that is infinite $\textbf{(E) }$ greater than the semi-circumference

Solution

Note that the half the circumference of a circle with diameter $d$ is $\frac{\pi*d}{2}$.

Let's call the diameter of the circle D. Dividing the circle's diameter into n parts means that each semicircle has diameter $\frac{D}{n}$, and thus each semicircle measures $\frac{D*pi}{n*2}$. The total sum of those is $n*\frac{D*pi}{n*2}=\frac{D*pi}{2}$, and since that is the exact expression for the semi-circumference of the original circle, the answer is $\boxed{A}$.

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 42
Followed by
Problem 44
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png