Difference between revisions of "1983 AHSME Problems/Problem 30"

m (Problem)
(Solution)
 
(One intermediate revision by one other user not shown)
Line 38: Line 38:
 
\textbf{(E)}\ 30^{\circ} </math>
 
\textbf{(E)}\ 30^{\circ} </math>
  
==Solution==
+
== Solution 1 ==
  
 
Since <math>\angle CAP = \angle CBP = 10^\circ</math>, quadrilateral <math>ABPC</math> is cyclic (as shown below) by the converse of the theorem "angles inscribed in the same arc are equal".
 
Since <math>\angle CAP = \angle CBP = 10^\circ</math>, quadrilateral <math>ABPC</math> is cyclic (as shown below) by the converse of the theorem "angles inscribed in the same arc are equal".
Line 76: Line 76:
  
 
Since <math>CA = CB</math>, triangle <math>ABC</math> is isosceles, with <math>\angle BAC = \angle ABC = 30^\circ</math>. Now, <math>\angle BAP = \angle BAC - \angle CAP = 30^\circ - 10^\circ = 20^\circ</math>. Finally, again using the fact that angles inscribed in the same arc are equal, we have <math>\angle BCP = \angle BAP = \boxed{\textbf{(C)}\ 20^{\circ}}</math>.
 
Since <math>CA = CB</math>, triangle <math>ABC</math> is isosceles, with <math>\angle BAC = \angle ABC = 30^\circ</math>. Now, <math>\angle BAP = \angle BAC - \angle CAP = 30^\circ - 10^\circ = 20^\circ</math>. Finally, again using the fact that angles inscribed in the same arc are equal, we have <math>\angle BCP = \angle BAP = \boxed{\textbf{(C)}\ 20^{\circ}}</math>.
 +
 +
== Solution 2 ==
 +
<asy>
 +
import geometry;
 +
import graph;
 +
 +
unitsize(4 cm);
 +
 +
pair A, B, C, M, N, P, Q, R;
 +
 +
M = (-1,0);
 +
N = (1,0);
 +
C = (0,0);
 +
A = dir(140);
 +
B = dir(20);
 +
Q = dir(-20);
 +
R = dir(-40);
 +
P = extension(A, A + rotate(10)*(C - A), B, B + rotate(10)*(C - B));
 +
 +
draw(M--N);
 +
draw(circle(C,1));
 +
draw(A--C--B);
 +
draw(A--P--B);
 +
draw(A--Q--C);
 +
draw(A--R--C);
 +
draw(A--B);
 +
draw(B--Q);
 +
 +
label("$A$", A, NW);
 +
label("$B$", B, E);
 +
label("$C$", C, SW);
 +
label("$M$", M, SW);
 +
label("$N$", N, SE);
 +
label("$P$", P, S);
 +
label("$Q$", Q, SE);
 +
label("$R$", R, SE);
 +
</asy>
 +
 +
Complete the circle centered at <math>C</math> and extend <math>AP</math> and <math>AC</math> to meet the circle at <math>Q</math> and <math>R</math>, respectively.  So <math>\stackrel{\frown}{NR} = \stackrel{\frown}{MA} = 40^\circ</math>, and <math>\stackrel{\frown}{QR} = 2 \cdot 10^\circ = 20^\circ</math>.  Therefore, <math>\stackrel{\frown}{NQ} = 40^\circ - 20^\circ = 20^\circ</math>. 
 +
 +
Since <math>CA = CQ</math>, <math>\triangle CAQ</math> is isosceles and <math>\angle CQA = \angle CAQ = 10^\circ</math>.  Let <math>\theta = \angle CBQ = \angle CQB</math>.  Then <math>\angle PBQ = \angle PQB = \theta - 10^\circ</math>, so <math>\triangle PBQ</math> is isosceles with <math>PB = PQ</math>.  So <math>CN</math> must bisect <math>\angle BCQ</math>, and <math>\stackrel{\frown}{BN} = \stackrel{\frown}{NQ} = \boxed{(\mathbf{C})\ 20^{\circ}}</math>.
 +
 +
-j314andrews
 +
 +
== Video Solution ==
 +
 +
https://youtu.be/fZAChuJDlSw?si=wJUPmgVRlYwazauh
 +
 +
~ smartschoolboy9
  
 
==See Also==
 
==See Also==

Latest revision as of 20:32, 2 July 2025

Problem

Distinct points $A$ and $B$ are on a semicircle with diameter $MN$ and center $C$. The point $P$ is on $CN$ and $\angle CAP = \angle CBP = 10^{\circ}$. If $\stackrel{\frown}{MA} = 40^{\circ}$, then $\stackrel{\frown}{BN}$ equals

[asy] import geometry; import graph;  unitsize(2 cm);  pair A, B, C, M, N, P;  M = (-1,0); N = (1,0); C = (0,0); A = dir(140); B = dir(20); P = extension(A, A + rotate(10)*(C - A), B, B + rotate(10)*(C - B));  draw(M--N); draw(arc(C,1,0,180)); draw(A--C--B); draw(A--P--B);  label("$A$", A, NW); label("$B$", B, E); label("$C$", C, S); label("$M$", M, SW); label("$N$", N, SE); label("$P$", P, S); [/asy]

$\textbf{(A)}\ 10^{\circ}\qquad \textbf{(B)}\ 15^{\circ}\qquad \textbf{(C)}\ 20^{\circ}\qquad \textbf{(D)}\ 25^{\circ}\qquad \textbf{(E)}\ 30^{\circ}$

Solution 1

Since $\angle CAP = \angle CBP = 10^\circ$, quadrilateral $ABPC$ is cyclic (as shown below) by the converse of the theorem "angles inscribed in the same arc are equal".

[asy] import geometry; import graph;  unitsize(2 cm);  pair A, B, C, M, N, P;  M = (-1,0); N = (1,0); C = (0,0); A = dir(140); B = dir(20); P = extension(A, A + rotate(10)*(C - A), B, B + rotate(10)*(C - B));  draw(M--N); draw(arc(C,1,0,180)); draw(A--C--B); draw(A--P--B); draw(A--B); draw(circumcircle(A,B,C),dashed);  label("$A$", A, NW); label("$B$", B, E); label("$C$", C, S); label("$M$", M, SW); label("$N$", N, SE); label("$P$", P, S); [/asy]

Since $\angle ACM = 40^\circ$, $\angle ACP = 140^\circ$, so, using the fact that opposite angles in a cyclic quadrilateral sum to $180^{\circ}$, we have $\angle ABP = 40^\circ$. Hence $\angle ABC = \angle ABP - \angle CBP = 40^ \circ - 10^\circ = 30^\circ$.

Since $CA = CB$, triangle $ABC$ is isosceles, with $\angle BAC = \angle ABC = 30^\circ$. Now, $\angle BAP = \angle BAC - \angle CAP = 30^\circ - 10^\circ = 20^\circ$. Finally, again using the fact that angles inscribed in the same arc are equal, we have $\angle BCP = \angle BAP = \boxed{\textbf{(C)}\ 20^{\circ}}$.

Solution 2

[asy] import geometry; import graph;  unitsize(4 cm);  pair A, B, C, M, N, P, Q, R;  M = (-1,0); N = (1,0); C = (0,0); A = dir(140); B = dir(20); Q = dir(-20); R = dir(-40); P = extension(A, A + rotate(10)*(C - A), B, B + rotate(10)*(C - B));  draw(M--N); draw(circle(C,1)); draw(A--C--B); draw(A--P--B); draw(A--Q--C); draw(A--R--C); draw(A--B); draw(B--Q);  label("$A$", A, NW); label("$B$", B, E); label("$C$", C, SW); label("$M$", M, SW); label("$N$", N, SE); label("$P$", P, S); label("$Q$", Q, SE); label("$R$", R, SE); [/asy]

Complete the circle centered at $C$ and extend $AP$ and $AC$ to meet the circle at $Q$ and $R$, respectively. So $\stackrel{\frown}{NR} = \stackrel{\frown}{MA} = 40^\circ$, and $\stackrel{\frown}{QR} = 2 \cdot 10^\circ = 20^\circ$. Therefore, $\stackrel{\frown}{NQ} = 40^\circ - 20^\circ = 20^\circ$.

Since $CA = CQ$, $\triangle CAQ$ is isosceles and $\angle CQA = \angle CAQ = 10^\circ$. Let $\theta = \angle CBQ = \angle CQB$. Then $\angle PBQ = \angle PQB = \theta - 10^\circ$, so $\triangle PBQ$ is isosceles with $PB = PQ$. So $CN$ must bisect $\angle BCQ$, and $\stackrel{\frown}{BN} = \stackrel{\frown}{NQ} = \boxed{(\mathbf{C})\ 20^{\circ}}$.

-j314andrews

Video Solution

https://youtu.be/fZAChuJDlSw?si=wJUPmgVRlYwazauh

~ smartschoolboy9

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 29
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png