Difference between revisions of "2016 AMC 10A Problems/Problem 1"
(→Solution 3) |
|||
| (21 intermediate revisions by 9 users not shown) | |||
| Line 12: | Line 12: | ||
Factoring out <math>9!</math> gives <math>\frac{11!-10!}{9!} = \frac{9!(11 \cdot 10 - 10)}{9!} = 110-10=\boxed{\textbf{(B)}~100}</math>. | Factoring out <math>9!</math> gives <math>\frac{11!-10!}{9!} = \frac{9!(11 \cdot 10 - 10)}{9!} = 110-10=\boxed{\textbf{(B)}~100}</math>. | ||
| + | |||
| + | |||
| + | ==Solution 3== | ||
| + | <math>\dfrac{11!-10!}{9!}</math> | ||
| + | consider 10 as n | ||
| + | <math>\dfrac{(n+1)!-n!}{(n-1)!}</math> | ||
| + | simpify | ||
| + | <math>\dfrac{(n+1)n!+(-1)n!}{(n-1)!}</math> = <math>\dfrac{n(n!)}{(n-1)!}</math> = <math>\dfrac{n(n(n-1)!)}{(n-1)!}</math> = <math>\dfrac{n(n)(1)}{1}</math> = <math>\dfrac{n^2}{1}</math> | ||
| + | subsitute n as 10 again | ||
| + | <math>\dfrac{10^2}{1}</math> | ||
| + | |||
| + | answer is <math>10^2</math> which is <math>\boxed{\textbf{(B)}~100}</math>. | ||
| + | |||
| + | ==Solution 4== | ||
| + | We are given the equation <math>\frac{11!-10!}{9!}</math> | ||
| + | |||
| + | This is equivalent to <math>\frac{11(10!) - 1(10!)}{9!}</math> | ||
| + | Simplifying, we get <math>\frac{(11-1)(10!)}{9!}</math>, which equals <math>10 \cdot 10</math>. | ||
| + | |||
| + | Therefore, the answer is <math>10^2</math> = <math>\boxed{\textbf{(B)}~100}</math>. | ||
| + | |||
| + | ~TheGoldenRetriever | ||
| + | |||
| + | ==Solution 5 (This is a joke)== | ||
| + | |||
| + | Let | ||
| + | <cmath> | ||
| + | I_n := \int_0^\infty x^n e^{-x} \, dx = n! | ||
| + | </cmath> | ||
| + | (the Gamma–integral). | ||
| + | |||
| + | Then | ||
| + | <cmath> | ||
| + | \frac{11! - 10!}{9!} = \frac{I_{11} - I_{10}}{I_9} = \frac{\int_0^\infty e^{-x} (x^{11} - x^{10}) \, dx}{I_9}. | ||
| + | </cmath> | ||
| + | Integration by parts on the numerator with \( u = x^{11} - x^{10} \), \( dv = e^{-x} \, dx \) (so \( du = (11x^{10} - 10x^9) \, dx \), \( v = -e^{-x} \)) gives | ||
| + | <cmath> | ||
| + | \int_0^\infty e^{-x} (x^{11} - x^{10}) \, dx = \left[ -e^{-x} (x^{11} - x^{10}) \right]_0^\infty + \int_0^\infty e^{-x} (11x^{10} - 10x^9) \, dx = 11 I_{10} - 10 I_9, | ||
| + | </cmath> | ||
| + | since the boundary term vanishes. | ||
| + | |||
| + | Hence | ||
| + | <cmath> | ||
| + | \frac{I_{11} - I_{10}}{I_9} = \frac{11 I_{10}}{I_9} - 10. | ||
| + | </cmath> | ||
| + | Do another integration by parts to relate \( I_{10} \) and \( I_9 \): | ||
| + | <cmath> | ||
| + | I_{10} = \int_0^\infty x^{10} e^{-x} \, dx = \left[ -x^{10} e^{-x} \right]_0^\infty + 10 \int_0^\infty x^9 e^{-x} \, dx = 10 I_9. | ||
| + | </cmath> | ||
| + | Therefore | ||
| + | <cmath> | ||
| + | \frac{I_{11} - I_{10}}{I_9} = 11 \cdot 10 - 10 = 100. | ||
| + | </cmath> | ||
| + | |||
| + | <math>\boxed{(B) 100}</math>. | ||
| + | |||
| + | ~Pinotation | ||
| + | |||
| + | ~Minorly Edited by OffBrandCab | ||
| + | |||
| + | ==Video Solution (HOW TO THINK CREATIVELY!!!)== | ||
| + | https://youtu.be/r5G98oPPyNM | ||
| + | |||
| + | ~Education, the Study of Everything | ||
| + | |||
| + | |||
==Video Solution== | ==Video Solution== | ||
https://youtu.be/VIt6LnkV4_w | https://youtu.be/VIt6LnkV4_w | ||
| − | |||
https://youtu.be/CrS7oHDrvP8 | https://youtu.be/CrS7oHDrvP8 | ||
~savannahsolver | ~savannahsolver | ||
| + | |||
| + | ==Video Solution (FASTEST METHOD!)== | ||
| + | |||
| + | https://youtu.be/jowREGsZaTs | ||
| + | |||
| + | ~Veer Mahajan | ||
| + | |||
==See Also== | ==See Also== | ||
| Line 26: | Line 98: | ||
{{AMC12 box|year=2016|ab=A|before=First Problem|num-a=2}} | {{AMC12 box|year=2016|ab=A|before=First Problem|num-a=2}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
| + | [[Category: Introductory Algebra Problems]] | ||
Latest revision as of 22:22, 26 October 2025
Contents
Problem
What is the value of
?
Solution 1
We can use subtraction of fractions to get
Solution 2
Factoring out
gives
.
Solution 3
consider 10 as n
simpify
=
=
=
=
subsitute n as 10 again
answer is
which is
.
Solution 4
We are given the equation
This is equivalent to
Simplifying, we get
, which equals
.
Therefore, the answer is
=
.
~TheGoldenRetriever
Solution 5 (This is a joke)
Let
(the Gamma–integral).
Then
Integration by parts on the numerator with \( u = x^{11} - x^{10} \), \( dv = e^{-x} \, dx \) (so \( du = (11x^{10} - 10x^9) \, dx \), \( v = -e^{-x} \)) gives
since the boundary term vanishes.
Hence
Do another integration by parts to relate \( I_{10} \) and \( I_9 \):
Therefore
.
~Pinotation
~Minorly Edited by OffBrandCab
Video Solution (HOW TO THINK CREATIVELY!!!)
https://youtu.be/r5G98oPPyNM
~Education, the Study of Everything
Video Solution
~savannahsolver
Video Solution (FASTEST METHOD!)
~Veer Mahajan
See Also
| 2016 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by First Problem |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2016 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by First Problem |
Followed by Problem 2 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.