Difference between revisions of "1981 AHSME Problems/Problem 2"

(Add title)
(Solution)
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
Point <math>E</math> is on side <math>AB</math> of square <math>ABCD</math>. If <math>EB</math> has length one and <math>EC</math> has length two, then the area of the square is
 
Point <math>E</math> is on side <math>AB</math> of square <math>ABCD</math>. If <math>EB</math> has length one and <math>EC</math> has length two, then the area of the square is
 +
 +
<asy>
 +
unitsize(2cm);
 +
size(200);
 +
pair A=(0,0), B=(1.732,0), C=(1.732,1.732), D=(0,1.732), E=(0.732,0);
 +
draw(A--B--C--D--cycle,black);
 +
draw(C--E,black);
 +
label("$A$",A,SW);
 +
label("$B$",B,SE);
 +
label("$C$",C,NE);
 +
label("$D$",D,NW);
 +
label("$E$",E,S);
 +
label("$2$", C--E, NW);
 +
label("$1$", B--E, S);
 +
</asy>
  
 
<math>\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ \sqrt{5}\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 2\sqrt{3}\qquad\textbf{(E)}\ 5</math>
 
<math>\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ \sqrt{5}\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 2\sqrt{3}\qquad\textbf{(E)}\ 5</math>
  
 
== Solution ==
 
== Solution ==
Note that <math>\triangle BCE</math> is a right triangle. Thus, we do Pythagorean theorem to find that side <math>BC=\sqrt{3}</math>. Since this is the side length of the square, the area of <math>ABCD</math> is <math>\boxed{\textbf{(C)}\ 3}</math>.  
+
Note that <math>\triangle BCE</math> is a right triangle. By the Pythagorean theorem, <math>BC^2 = CE^2 - BE^2 = 2^2-1^2=3</math>, so the area of <math>ABCD</math> is <math>\boxed{\textbf{(C)}\ 3}</math>.
 +
 
 +
~superagh, edited by j314andrews.
  
~superagh
+
== See Also ==
 +
{{AHSME box|year=1981|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Latest revision as of 11:16, 29 June 2025

Problem

Point $E$ is on side $AB$ of square $ABCD$. If $EB$ has length one and $EC$ has length two, then the area of the square is

[asy] unitsize(2cm); size(200); pair A=(0,0), B=(1.732,0), C=(1.732,1.732), D=(0,1.732), E=(0.732,0); draw(A--B--C--D--cycle,black); draw(C--E,black); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",E,S); label("$2$", C--E, NW); label("$1$", B--E, S); [/asy]

$\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ \sqrt{5}\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 2\sqrt{3}\qquad\textbf{(E)}\ 5$

Solution

Note that $\triangle BCE$ is a right triangle. By the Pythagorean theorem, $BC^2 = CE^2 - BE^2 = 2^2-1^2=3$, so the area of $ABCD$ is $\boxed{\textbf{(C)}\ 3}$.

~superagh, edited by j314andrews.

See Also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png