Difference between revisions of "2024 SSMO Team Round Problems/Problem 15"
(Created page with "==Problem== In triangle <math>ABC</math> inscribed in circle <math>\omega,</math> let <math>M</math> be the midpoint of <math>BC.</math> Denote <math>P</math> as the intersec...") |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | We will use barycentric coordinates with <math>ABC</math> as the reference triangle. Let <math>A = (1:0:0),B = (0:1:0),C(0:0:1).</math> Note that the circumcircle of <math>ABC</math> can be represented as <math>a^2yx+b^2xz+c^2xy = 0.</math> Since <math>P</math> lies on cevian <math>AM,</math> with <math>M = \left(0:\frac{1}{2}:\frac{1}{2}\right),</math> we have <math>P = (x_p:y_p:z_p),</math> for <math>y_p=z_p.</math> Substituting into the equation for the circumcircle of <math>ABC,</math> we have | ||
+ | \begin{align*} | ||
+ | a^2y_pz_p+b^2x_pz_p+c^2x_py_p&=0\implies\\ | ||
+ | a^2y_p^2+b^2x_py_p+c^2x_py_p&=0\implies\\ | ||
+ | a^2y_p &= -(b^2+c^2)x_p\implies\\ | ||
+ | y_p&=-\frac{b^2+c^2}{a^2}x_p. | ||
+ | \end{align*} | ||
+ | From <math>x_p+y_p+z_p=1,</math> we have <cmath>x_p+\left(-\frac{(b^2+c^2)}{a^2}\right)x_p+\left(-\frac{(b^2+c^2)}{a^2}\right)x_p = 1\implies x_p = \frac{a^2}{2b^2+2c^2-a^2}.</cmath> So, <math>P = \left(-\frac{a^2}{2b^2+2c^2-a^2}:\frac{b^2+c^2}{2b^2+2c^2-a^2}:\frac{b^2+c^2}{2b^2+2c^2-a^2}\right).</math> Now, we have <math>\overrightarrow{PB} = (x_{pb}:y_{pb}:z_{pb}) = \left(\frac{a^2}{2b^2+2c^2-a^2}:\frac{b^2+c^2-a^2}{2b^2+2c^2-a^2}:-\frac{b^2+c^2}{2b^2+2c^2-a^2}\right).</math> So, | ||
+ | \begin{align*} | ||
+ | PB^2 &= \left|a^2y_{pb}z_{pb}+b^2x_{pb}z_{pb}+c^2x_{pb}y_{pb}\right|\\ | ||
+ | &=\left|a^2\left(\frac{b^2+c^2-a^2}{2b^2+2c^2-a^2}\right)\left(-\frac{b^2+c^2}{2b^2+2c^2-a^2}\right)\\+b^2\left(\frac{a^2}{2b^2+2c^2-a^2}\right)\left(-\frac{b^2+c^2}{2b^2+2c^2-a^2}\right)\\+c^2\left(\frac{a^2}{2b^2+2c^2-a^2}\right)\left(\frac{b^2+c^2-a^2}{2b^2+2c^2-a^2}\right)\right|\\ | ||
+ | &=\frac{|a^4b^2-2a^2b^4-2a^2b^2c^2|}{(2b^2+2c^2-a^2)^2}\\ | ||
+ | &=\frac{a^2b^2(2b^2+2c^2-a^2)}{(2b^2+2c^2-a^2)^2}\\ | ||
+ | &=\frac{a^2b^2}{2b^2+2c^2-a^2}\implies\\ | ||
+ | PB&=\frac{ab}{\sqrt{2b^2+2c^2-a^2}} | ||
+ | \end{align*} | ||
+ | In the same manner, we have <cmath>PC = \frac{ac}{\sqrt{2b^2+2c^2-a^2}}.</cmath> So, we have <cmath>AM = 20\implies\frac{\sqrt{2b^2+2c^2-a^2}}{2} = 20\implies\sqrt{2b^2+2c^2-a^2} = 40.</cmath> This means <cmath>ab = PB\sqrt{2b^2+2c^2-a^2} = 9\cdot40</cmath> and <cmath>ac = PC\sqrt{2b^2+2c^2-a^2}=13\cdot40.</cmath> Solving for <math>b</math> and <math>c</math>, we have <math>b = \frac{9\cdot40}{a},c = \frac{13\cdot40}{a}.</math> Substituting, we get | ||
+ | \begin{align*} | ||
+ | \sqrt{2b^2+2c^2-a^2} &= 40\\ | ||
+ | 2b^2+2c^2-a^2 &= 40^2\implies\\ | ||
+ | 2\left(\left(\frac{9\cdot40}{a}\right)^2+\left(\frac{13\cdot40}{a}\right)^2\right)-a^2 &=40^2\implies\\ | ||
+ | a^4+40^2a^2-2\left((9\cdot40)^2+(13\cdot40)^2\right) &= 0\implies\\ | ||
+ | a^2 &= \frac{-40^2\pm\sqrt{40^4+8\left((9\cdot40)^2+(13\cdot40)^2\right)}}{2}\\ | ||
+ | &=(20)\left(\pm\sqrt{40^2+8(9^2+13^2)}-40\right)\\ | ||
+ | &=(20)\left(\pm60-40\right) = 400,-2000\implies\\ | ||
+ | a&=20. | ||
+ | \end{align*} | ||
+ | So, <math>b = \frac{9\cdot40}{a} = \frac{9\cdot40}{20} = 18</math> and <math>c = \frac{13\cdot40}{20} = 26.</math> In conclusion, the perimeter of <math>ABC</math> is <math>20+18+26 = \boxed{64}.</math> | ||
+ | |||
+ | ~SMO_Team |
Latest revision as of 14:42, 10 September 2025
Problem
In triangle inscribed in circle
let
be the midpoint of
Denote
as the intersection of
with
If
and
find the perimeter of triangle
Solution
We will use barycentric coordinates with as the reference triangle. Let
Note that the circumcircle of
can be represented as
Since
lies on cevian
with
we have
for
Substituting into the equation for the circumcircle of
we have
\begin{align*}
a^2y_pz_p+b^2x_pz_p+c^2x_py_p&=0\implies\\
a^2y_p^2+b^2x_py_p+c^2x_py_p&=0\implies\\
a^2y_p &= -(b^2+c^2)x_p\implies\\
y_p&=-\frac{b^2+c^2}{a^2}x_p.
\end{align*}
From
we have
So,
Now, we have
So,
\begin{align*}
PB^2 &= \left|a^2y_{pb}z_{pb}+b^2x_{pb}z_{pb}+c^2x_{pb}y_{pb}\right|\\
&=\left|a^2\left(\frac{b^2+c^2-a^2}{2b^2+2c^2-a^2}\right)\left(-\frac{b^2+c^2}{2b^2+2c^2-a^2}\right)\\+b^2\left(\frac{a^2}{2b^2+2c^2-a^2}\right)\left(-\frac{b^2+c^2}{2b^2+2c^2-a^2}\right)\\+c^2\left(\frac{a^2}{2b^2+2c^2-a^2}\right)\left(\frac{b^2+c^2-a^2}{2b^2+2c^2-a^2}\right)\right|\\
&=\frac{|a^4b^2-2a^2b^4-2a^2b^2c^2|}{(2b^2+2c^2-a^2)^2}\\
&=\frac{a^2b^2(2b^2+2c^2-a^2)}{(2b^2+2c^2-a^2)^2}\\
&=\frac{a^2b^2}{2b^2+2c^2-a^2}\implies\\
PB&=\frac{ab}{\sqrt{2b^2+2c^2-a^2}}
\end{align*}
In the same manner, we have
So, we have
This means
and
Solving for
and
, we have
Substituting, we get
\begin{align*}
\sqrt{2b^2+2c^2-a^2} &= 40\\
2b^2+2c^2-a^2 &= 40^2\implies\\
2\left(\left(\frac{9\cdot40}{a}\right)^2+\left(\frac{13\cdot40}{a}\right)^2\right)-a^2 &=40^2\implies\\
a^4+40^2a^2-2\left((9\cdot40)^2+(13\cdot40)^2\right) &= 0\implies\\
a^2 &= \frac{-40^2\pm\sqrt{40^4+8\left((9\cdot40)^2+(13\cdot40)^2\right)}}{2}\\
&=(20)\left(\pm\sqrt{40^2+8(9^2+13^2)}-40\right)\\
&=(20)\left(\pm60-40\right) = 400,-2000\implies\\
a&=20.
\end{align*}
So,
and
In conclusion, the perimeter of
is
~SMO_Team