Difference between revisions of "1981 AHSME Problems/Problem 5"
J314andrews (talk | contribs) (→Solution) |
J314andrews (talk | contribs) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Problem 5== | ==Problem 5== | ||
− | In trapezoid <math>ABCD</math>, sides <math>AB</math> and <math>CD</math> are parallel, and diagonal <math>BD</math> and side <math>AD</math> have equal length. If <math> | + | In trapezoid <math>ABCD</math>, sides <math>AB</math> and <math>CD</math> are parallel, and diagonal <math>BD</math> and side <math>AD</math> have equal length. If <math>\angle DCB=110^\circ </math> and <math> \angle CBD=30^\circ </math>, then <math> \angle ADB=</math> |
+ | |||
+ | <asy> | ||
+ | import geometry; | ||
+ | size(8cm); | ||
+ | pair A=(0,0), D=(1.1918,1), B=(2.3835,0), C=(2.0195,1); | ||
+ | draw(A--B--C--D--cycle, black); | ||
+ | draw(B--D, black); | ||
+ | draw(A--D, StickIntervalMarker(1,1)); | ||
+ | draw(D--B, StickIntervalMarker(1,1)); | ||
+ | label("$A$", A, SW); | ||
+ | label("$B$", B, SE); | ||
+ | label("$C$", C, NE); | ||
+ | label("$D$", D, NW); | ||
+ | label("$110^\circ$", C, .6S+.5W); | ||
+ | label("$?$", D, 1.5S); | ||
+ | label("$30^\circ$", B, 7.5N+4.7W); | ||
+ | </asy> | ||
<math> \textbf{(A)}\ 80^\circ\qquad\textbf{(B)}\ 90^\circ\qquad\textbf{(C)}\ 100^\circ\qquad\textbf{(D)}\ 110^\circ\qquad\textbf{(E)}\ 120^\circ </math> | <math> \textbf{(A)}\ 80^\circ\qquad\textbf{(B)}\ 90^\circ\qquad\textbf{(C)}\ 100^\circ\qquad\textbf{(D)}\ 110^\circ\qquad\textbf{(E)}\ 120^\circ </math> | ||
==Solution== | ==Solution== | ||
− | + | In <math>\triangle BCD</math>, <math>\angle CDB=180^\circ - \angle DCB - \angle CBD = 180^\circ - 30^\circ - 110^\circ = 40^\circ.</math> | |
− | |||
− | |||
− | + | Because <math>AB \parallel CD</math>, <math>\angle CDB= \angle DBA = 40^\circ</math>. Since <math>\triangle DAB</math> is isosceles, <math>\angle ADB = 180^\circ - 2 \cdot 40^\circ = 100^\circ.</math> <math>\fbox{(C)}</math> | |
− | -edited by coolmath34 | + | -edited by coolmath34, j314andrews |
== See Also == | == See Also == | ||
{{AHSME box|year=1981|num-b=4|num-a=6}} | {{AHSME box|year=1981|num-b=4|num-a=6}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 12:14, 29 June 2025
Problem 5
In trapezoid , sides
and
are parallel, and diagonal
and side
have equal length. If
and
, then
Solution
In ,
Because ,
. Since
is isosceles,
-edited by coolmath34, j314andrews
See Also
1981 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.