Difference between revisions of "1981 AHSME Problems/Problem 6"

(Solution)
(Solution)
 
(One intermediate revision by the same user not shown)
Line 14: Line 14:
 
==Solution==
 
==Solution==
  
We can cross multiply both sides of the equation and simplify.
+
Cross-multiply and simplify:
 
<cmath>x(y^2 + 2y - 2) = (x-1)(y^2 + 2y - 1)</cmath>
 
<cmath>x(y^2 + 2y - 2) = (x-1)(y^2 + 2y - 1)</cmath>
 
<cmath>xy^2 + 2xy - 2x = xy^2 + 2xy - x - y^2 - 2y + 1</cmath>
 
<cmath>xy^2 + 2xy - 2x = xy^2 + 2xy - x - y^2 - 2y + 1</cmath>
 
<cmath>-x = -y^2 - 2y + 1</cmath>
 
<cmath>-x = -y^2 - 2y + 1</cmath>
<cmath>x = y^2 + 2y - 1</cmath>
+
<cmath>x = \boxed{(\textbf{A})\ y^2 + 2y - 1}</cmath>
 
 
The answer is <math>\text{A.}</math>
 
  
 
-edited by coolmath34
 
-edited by coolmath34
Line 26: Line 24:
 
==See also==
 
==See also==
  
{{AHSME box|year=1981|before=5|num-a=7}}
+
{{AHSME box|year=1981|num-b=5|num-a=7}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 16:02, 18 August 2025

Problem

If $\frac{x}{x-1} = \frac{y^2 + 2y - 1}{y^2 + 2y - 2},$ then $x$ equals

$\text{(A)} \quad y^2 + 2y - 1$

$\text{(B)} \quad y^2 + 2y - 2$

$\text{(C)} \quad y^2 + 2y + 2$

$\text{(D)} \quad y^2 + 2y + 1$

$\text{(E)} \quad -y^2 - 2y + 1$

Solution

Cross-multiply and simplify: \[x(y^2 + 2y - 2) = (x-1)(y^2 + 2y - 1)\] \[xy^2 + 2xy - 2x = xy^2 + 2xy - x - y^2 - 2y + 1\] \[-x = -y^2 - 2y + 1\] \[x = \boxed{(\textbf{A})\ y^2 + 2y - 1}\]

-edited by coolmath34

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png