Difference between revisions of "User talk:Bobthesmartypants/Sandbox"

(sandbox)
 
(37 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
{{Template:Sandbox}}
 +
 
==Bobthesmartypants's Sandbox==
 
==Bobthesmartypants's Sandbox==
 
==Solution 1==
 
==Solution 1==
Line 64: Line 66:
 
</asy>
 
</asy>
 
<cmath>\text{Find the probability that }b>a \text{.}</cmath>
 
<cmath>\text{Find the probability that }b>a \text{.}</cmath>
 +
 +
<asy>unitsize(2inch);
 +
import olympiad;
 +
path c2 = dir(90)-dir(120)..dir(90)-dir(150)..dir(90)-dir(180);
 +
path c1 = dir(90)-dir(0)..dir(90)-dir(30)..dir(90)-dir(60);
 +
path c3 = dir(120)..dir(150)..dir(180);
 +
path c4 = dir(0)..dir(30)..dir(60);
 +
 +
draw(dir(0)..dir(30)..dir(60)..dir(90)..dir(120)..dir(150)..dir(180)--dir(0));
 +
draw(dir(90)-dir(0)..dir(90)-dir(30)..dir(90)-dir(60)..dir(90)-dir(90)..dir(90)-dir(120)..dir(90)-dir(150)..dir(90)-dir(180)--dir(90)-dir(0));
 +
draw((-1.2,0.8)--(1.2,0.8));
 +
label("$l_{-n}$", (1.2,0.8),dir(0));
 +
draw((-1.2,0.5)--(1.2,0.5));
 +
label("$l_0$", (1.2,0.5),dir(0));
 +
draw((-1.2,0.2)--(1.2,0.2));
 +
label("$l_n$", (1.2,0.2),dir(0));
 +
label("$\vdots$", (1.2, 0.4), dir(0));
 +
label("$\vdots$", (0, 0.4));
 +
label("$\vdots$", (1.2, 0.65), dir(0));
 +
label("$\vdots$", (0, 0.65));
 +
 +
label("$A_{-n}$", intersectionpoint(c1, (-1.2, 0.8)--(1.2, 0.8)), dir(135));
 +
label("$C_{-n}$", intersectionpoint(c3, (-1.2, 0.8)--(1.2, 0.8)), dir(135));
 +
label("$D_{-n}$", intersectionpoint(c4, (-1.2, 0.8)--(1.2, 0.8)), dir(45));
 +
label("$B_{-n}$", intersectionpoint(c2, (-1.2, 0.8)--(1.2, 0.8)), dir(45));
 +
 +
label("$X$", intersectionpoint(c1, (-1.2, 0.5)--(1.2, 0.5)), dir(150));
 +
label("$Y$", intersectionpoint(c2, (-1.2, 0.5)--(1.2, 0.5)), dir(30));
 +
 +
label("$C_{n}$", intersectionpoint(c3, (-1.2, 0.2)--(1.2, 0.2)), dir(135));
 +
label("$A_{n}$", intersectionpoint(c1, (-1.2, 0.2)--(1.2, 0.2)), dir(45));
 +
label("$B_{n}$", intersectionpoint(c2, (-1.2, 0.2)--(1.2, 0.2)), dir(135));
 +
label("$D_{n}$", intersectionpoint(c4, (-1.2, 0.2)--(1.2, 0.2)), dir(45));
 +
 +
dot(intersectionpoint(c1, (-1.2, 0.8)--(1.2, 0.8)));
 +
dot(intersectionpoint(c2, (-1.2, 0.8)--(1.2, 0.8)));
 +
dot(intersectionpoint(c3, (-1.2, 0.8)--(1.2, 0.8)));
 +
dot(intersectionpoint(c4, (-1.2, 0.8)--(1.2, 0.8)));
 +
 +
dot(intersectionpoint(c1, (-1.2, 0.5)--(1.2, 0.5)));
 +
dot(intersectionpoint(c2, (-1.2, 0.5)--(1.2, 0.5)));
 +
dot(intersectionpoint(c3, (-1.2, 0.5)--(1.2, 0.5)));
 +
dot(intersectionpoint(c4, (-1.2, 0.5)--(1.2, 0.5)));
 +
 +
dot(intersectionpoint(c1, (-1.2, 0.2)--(1.2, 0.2)));
 +
dot(intersectionpoint(c2, (-1.2, 0.2)--(1.2, 0.2)));
 +
dot(intersectionpoint(c3, (-1.2, 0.2)--(1.2, 0.2)));
 +
dot(intersectionpoint(c4, (-1.2, 0.2)--(1.2, 0.2)));
 +
</asy>
 +
 +
Two half-circles are drawn as shown above, with a line <math>l_0</math> throught the two intersections points, <math>X,Y</math> of the half-circles. Lines <math>l_k</math> for <math>k=-n\to n</math> parallel to the bases of the half-circles are drawn such that the distances between <math>l_k</math> and <math>l_0</math> and <math>l_{-k}</math> and <math>l_0</math> are always the same for all <math>k=1\to n</math>.
 +
 +
The intersection points of <math>l_k</math> with one of the half-circles are labeled <math>A_k, B_k</math>, and with the other half-circle at <math>C_k,D_k</math>, as shown in the diagram.
 +
 +
Prove that <cmath>\prod_{k=-n}^n |A_kB_k|+|C_kD_k| \ge \prod_{k=-n}^n |A_kD_k|+|B_kC_k|</cmath>
 +
 
==Picture 2==
 
==Picture 2==
 
<asy>
 
<asy>
Line 75: Line 133:
 
</asy>
 
</asy>
 
<cmath>\text{Prove the shaded areas are equal.}</cmath>
 
<cmath>\text{Prove the shaded areas are equal.}</cmath>
==sandbox==
 
 
<asy>
 
<asy>
unitsize(0.2mm);
+
for(int i = 0; i < 8; ++i){
pair H,S,X,Y,A,B;
+
  for(int j = 0; j < 8; ++j){
H = (25,0);
+
    filldraw((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--cycle,black);
S = (0,115);
+
  }
X = (122,26);
+
}
Y = (-75,-17);
+
for(int i = 1; i < 7; ++i){
A = ((H+X)/2);
+
  filldraw((i,7-i)--(i+1,7-i)--(i+1,8-i)--(i,8-i)--cycle,white);
B = ((S+X)/2);
+
}
draw(Circle(H,100));
+
for(int i = 0; i < 5; ++i){
draw(Circle(S,150));
+
  filldraw((i,4-i)--(i+1,4-i)--(i+1,5-i)--(i,5-i)--cycle,white);
draw(H--S--X--cycle);
+
}
draw(H--Y--S,linetype("8 8"));
+
 
label("100",A,dir(-90));
+
for(int i = 0; i < 5; ++i){
label("150",B,dir(-120));
+
  filldraw((8-i,4+i)--(7-i,4+i)--(7-i,3+i)--(8-i,3+i)--cycle,white);
label("H",H,dir(-90));
+
}
label("S",S,dir(90));
+
 
label("X",X,dir(0));
+
filldraw((1,0)--(2,0)--(2,1)--(1,1)--cycle,white);
label("X'",Y,dir(-135));
+
filldraw((0,1)--(0,2)--(1,2)--(1,1)--cycle,white);
 +
filldraw((7,8)--(6,8)--(6,7)--(7,7)--cycle,white);
 +
filldraw((8,7)--(8,6)--(7,6)--(7,7)--cycle,white);
 +
</asy>
 +
 
 +
==physics problem==
 +
 
 +
<asy>size(100,100);
 +
draw((0,0)--(0,10));
 +
draw(Circle((1,1),1));
 +
dot((0,0));
 +
draw(9.5*dir(80)..9.5*dir(70)..9.5*dir(60),EndArrow());
 +
label("A",(-1,5),dir(180));</asy>
 +
 
 +
<asy>
 +
size(85,85);
 +
draw((0,0)--10*dir(60));
 +
draw(Circle((sqrt(3),1),1));
 +
dot((0,0));
 +
draw(9.5*dir(50)..9.5*dir(40)..9.5*dir(30),EndArrow());
 +
label("B",(0,5),dir(0));
 +
</asy>
 +
 
 +
<asy>
 +
size(110,110);
 +
draw((0,0)--10*dir(11.42));
 +
draw(Circle((10,1),1));
 +
dot((0,0));
 +
label("C",(5,1.5),dir(90));
 +
</asy>
 +
==Solution==
 +
<asy>
 +
import olympiad;
 +
 
 +
 
 +
size(350,350);
 +
draw((0,0)--10*dir(60));
 +
draw(Circle((sqrt(3),1),1));
 +
dot((0,0));
 +
draw((-1,0)--(7,0),grey);
 +
draw((0,0)--(sqrt(3),1),linetype("8 8"));
 +
draw((0,0)--(0,5),grey);
 +
draw(sqrt(3)*dir(60)--(sqrt(3),1)--(sqrt(3),0),linetype("8 8"));
 +
draw(anglemark((1,0),(0,0),dir(30)));
 +
label("$\varphi$",0.3*dir(15),dir(15));
 +
draw(anglemark(dir(60),(0,0),(0,1)));
 +
label("$\theta$",0.3*dir(75),dir(75));
 +
label("$1$",(sqrt(3),0.5),dir(0));
 +
label("$\frac{1}{\tan\varphi}$",(sqrt(3)/2,0),dir(-90));
 +
</asy>
 +
 
 +
<asy>
 +
import olympiad;
 +
 
 +
 
 +
size(300,300);
 +
draw((0,0)--10*dir(11.42));
 +
draw(Circle((10,1),1));
 +
dot((0,0));
 +
draw((-1,0)--(12,0),grey);
 +
draw((0,0)--(0,3),grey);
 +
draw(anglemark(10*dir(11.42),(0,0),(0,1)));
 +
label("$\theta$",0.3*dir(50.71),dir(50.71));
 +
draw((0,0)--(10,1),linetype("8 8"));
 +
draw(10*dir(11.42)--(10,1)--(10,0),linetype("8 8"));
 +
label("$1$",(10,0.5),dir(0));
 +
label("$10$",(5,0),dir(-90));
 +
label("$\varphi$",3.4*dir(2.855),dir(2.855));
 +
markscalefactor=0.4;
 +
draw(anglemark((1,0),(0,0),dir(5.71)));
 +
</asy>
 +
 
 +
==inscribed triangle==
 +
 
 +
<asy>
 +
draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle));
 +
draw(dir(56)--dir(230),green);
 +
draw(dir(-23)--dir(-98),red);</asy>
 +
 
 +
<asy>
 +
draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle));
 +
draw(dir(0)--dir(36),red);
 +
draw(dir(0)--dir(72),red);
 +
draw(dir(0)--dir(108),red);
 +
draw(dir(0)--dir(144),green);
 +
draw(dir(0)--dir(180),green);
 +
draw(dir(0)--dir(216),green);
 +
draw(dir(0)--dir(-36),red);
 +
draw(dir(0)--dir(-72),red);
 +
draw(dir(0)--dir(-108),red);
 +
</asy>
 +
 
 +
<asy>
 +
draw((dir(30)--dir(150)--dir(270)--dir(30)..dir(150)..dir(270)..dir(30)--cycle));
 +
draw(dir(-72)--dir(180+72),red);
 +
draw(dir(-54)--dir(180+54),red);
 +
draw(dir(-36)--dir(180+36),red);
 +
draw(dir(-18)--dir(180+18),green);
 +
draw(dir(-0)--dir(180+0),green);
 +
draw(dir(72)--dir(180-72),red);
 +
draw(dir(54)--dir(180-54),red);
 +
draw(dir(36)--dir(180-36),red);
 +
draw(dir(18)--dir(180-18),green);
 +
 
 +
</asy>
 +
 
 +
<asy>
 +
import olympiad;
 +
size(300);
 +
 
 +
draw(dir(0)..dir(60)..dir(120)..dir(180)--cycle);
 +
draw((0,0)--dir(30)--dir(150)--cycle);
 +
draw((0,0)--dir(90));
 +
label("$r$",0.5*dir(30),dir(-60));
 +
label("$r$",0.5*dir(150),dir(240));
 +
label("$\frac{r}{2}$",0.25*dir(90),dir(0));
 +
label("$\frac{r}{2}$",0.75*dir(90),dir(0));
 +
markscalefactor=0.01;
 +
draw(anglemark(dir(90),(0,0),dir(150)));
 +
draw(anglemark((0,0),dir(150),dir(30)));
 +
draw(rightanglemark(dir(150),0.5*dir(90),(0,0)));
 +
label("$60^{\circ}$",0.07*dir(120),dir(120));
 +
label("$30^{\circ}$",0.9*dir(150),dir(0));</asy>
 +
 
 +
<asy>draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle));
 +
draw(Circle((0,0),0.5));
 +
draw(dir(0)--dir(45),red);
 +
dot((dir(0)+dir(45))/2,red);
 +
draw(dir(125)--dir(185),red);
 +
dot((dir(125)+dir(185))/2,red);
 +
draw(dir(240)--dir(325),red);
 +
dot((dir(240)+dir(325))/2,red);
 +
draw(dir(65)--dir(165),red);
 +
dot((dir(65)+dir(165))/2,red);
 +
draw(dir(200)--dir(254),red);
 +
dot((dir(200)+dir(254))/2,red);
 +
draw(dir(80)--dir(205),green);
 +
dot((dir(80)+dir(205))/2,green);
 +
draw(dir(200)--dir(345),green);
 +
dot((dir(200)+dir(345))/2,green);
 +
draw(dir(220)--dir(385),green);
 +
dot((dir(220)+dir(385))/2,green);
 +
draw(dir(-60)--dir(125),green);
 +
dot((dir(-60)+dir(125))/2,green);
 +
draw(dir(160)--dir(360),green);
 +
dot((dir(160)+dir(360))/2,green);</asy>
 +
 
 +
<asy>draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle));
 +
draw(Circle((0,0),0.5));
 +
draw((0,0)--0.5*dir(-60));
 +
draw((0,0)--dir(120));
 +
label("$r$",0.25*dir(-60),dir(-150));
 +
label("$R$",0.4*dir(120),dir(210));
 +
dot((0,0));</asy>
 +
 
 +
==moar images==
 +
 
 +
<asy>
 +
import olympiad;
 +
markscalefactor=0.01;
 +
 
 +
draw((-1,0)--(1,0));
 +
draw((-1,0)--dir(30)--(1,0));
 +
dot(incenter(dir(180),dir(30),dir(0)));
 +
draw(rightanglemark(dir(180),dir(30),dir(0)));
 +
 
 +
draw((-1,0)--dir(80)--(1,0));
 +
dot(incenter(dir(180),dir(80),dir(0)));
 +
draw(rightanglemark(dir(180),dir(80),dir(0)));
 +
draw((-1,0)--dir(140)--(1,0));
 +
dot(incenter(dir(180),dir(140),dir(0)));
 +
draw(rightanglemark(dir(180),dir(140),dir(0)));
 +
 
 +
draw((-1,0)--dir(200)--(1,0));
 +
dot(incenter(dir(180),dir(200),dir(0)));
 +
draw(rightanglemark(dir(180),dir(200),dir(0)));
 +
 
 +
draw((-1,0)--dir(250)--(1,0));
 +
dot(incenter(dir(180),dir(250),dir(0)));
 +
draw(rightanglemark(dir(180),dir(250),dir(0)));
 +
draw((-1,0)--dir(320)--(1,0));
 +
dot(incenter(dir(180),dir(320),dir(0)));
 +
draw(rightanglemark(dir(180),dir(320),dir(0)));
 +
 
 +
label("$1$",(0,0),dir(90));
 +
draw(Circle((0,0),1),linetype("8 8"));</asy>
 +
 
 +
 
 +
<asy>
 +
import olympiad;
 +
markscalefactor=0.01;
 +
draw((-1,0)--(1,0));
 +
 
 +
draw((-1,0)--dir(80)--(1,0));
 +
dot(incenter(dir(180),dir(80),dir(0)));
 +
draw((-1,0)--incenter(dir(180),dir(80),dir(0))--(1,0),linetype("8 8"));
 +
draw(rightanglemark(dir(180),dir(80),dir(0)));
 +
 
 +
label("$A$",(-1,0),dir(180));
 +
label("$B$",(1,0),dir(0));
 +
label("$C$",dir(80),dir(90));
 +
label("$I$",incenter(dir(180),dir(80),dir(0)),dir(90));
 +
draw(Circle((0,0),1),linetype("8 8"));</asy>
 +
 
 +
<asy>
 +
import olympiad;
 +
markscalefactor=0.01;
 +
draw((-1,0)--(1,0));
 +
 
 +
draw((-1,0)--dir(80)--(1,0));
 +
dot(incenter(dir(180),dir(80),dir(0)));
 +
draw(rightanglemark(dir(180),dir(80),dir(0)));
 +
draw(dir(180)..incenter(dir(180),dir(80),dir(0))..dir(0));
 +
draw(Circle((0,-1),sqrt(2)),linetype("8 8"));
 +
 
 +
 
 +
draw(Circle((0,0),1),linetype("8 8"));</asy>
 +
 
 +
<asy>
 +
import olympiad;
 +
markscalefactor=0.01;
 +
 
 +
fill(dir(0)..incenter(dir(180),dir(260),dir(0))..dir(180)--dir(180)..incenter(dir(180),dir(80),dir(0))..dir(0)--cycle,grey);
 +
draw((-1,0)--(1,0));
 +
draw(dir(180)..incenter(dir(180),dir(80),dir(0))..dir(0));
 +
draw(Circle((0,-1),sqrt(2)));
 +
draw(dir(180)..incenter(dir(180),dir(260),dir(0))..dir(0));
 +
draw(Circle((0,1),sqrt(2)));
 +
draw(dir(0)--dir(90)--dir(180)--dir(-90)--cycle);</asy>
 +
 
 +
==yay==
 +
 
 +
<asy>
 +
import olympiad;
 +
 
 +
draw(Circle((0,0),1));
 +
draw((0,0)--dir(75));
 +
draw((1.5,0)--(-1.5,0),grey);
 +
draw((0,1.5)--(0,-1.5),grey);
 +
markscalefactor=0.01;
 +
draw(anglemark(dir(0),(0,0),dir(75)));
 +
label("$\theta$",0.07*dir(37.5),dir(37.5));
 +
draw(dir(180)--dir(75)--dir(0));
 +
label("$P$",dir(75),dir(75));
 +
label("$A$",dir(0),dir(0));
 +
label("$B$",dir(180),dir(180));</asy>
 +
 
 +
==solution reflection==
 +
 
 +
<asy>draw(dir(0)--(0,0)--dir(15)--(0,0)--dir(30));
 +
draw(dir(0)--dir(15)--dir(30),linetype("8 8"));
 +
dot(0.75*dir(7));
 +
draw(0.75*dir(7.5)--0.574*dir(15)--0.4*dir(0));
 +
draw(0.574*dir(15)--0.4062*dir(30),linetype("8 8"));
 +
label("$A$",(0,0),dir(180));
 +
label("$B$",dir(15),dir(15));
 +
label("$C$",dir(0),dir(0));
 +
label("$C'$",dir(30),dir(30));</asy>
 +
 
 +
 
 +
<asy>
 +
for(int i = 0; i < 60; ++i){
 +
  draw((0,0)--dir(6*i));
 +
draw(dir(6*i)--dir(6*i+6),linetype("8 8"));
 +
}
 +
draw(1.2*dir(3)--1.2*dir(177));
 +
label("Diagram not to Scale",dir(-90),dir(-90));</asy>
 +
 
 +
==origami==
 +
 
 +
<asy>draw((1,1)--(-1,1)--(-1,-1)--(1,-1)--cycle);
 +
dot((0,0));
 +
label("$O$",(0,0),dir(0));
 +
dot((-0.5,0.75));
 +
label("$P$",(-0.5,0.75),dir(0));</asy>
 +
 
 +
<asy>draw((11/16,1)--(1,1)--(1,-1)--(-1,-1)--(-1,-1/8));
 +
draw((-1,-1/8)--(-1,1)--(11/16,1),linetype("8 8"));
 +
dot((0,0));
 +
label("$O$",(0,0),dir(0));
 +
dot((-0.5,0.75));
 +
label("$P$",(-0.5,0.75),dir(0));
 +
draw((-1,-1/8)--(11/16,1)--(1/26,-29/52)--cycle);
 +
draw((-0.5,0.7)..(-0.3,0.3)..(-0.05,0.05),Arrow());</asy>
 +
 
 +
==combos==
 +
 
 +
<asy>label("$C$",(0,0));
 +
label("$C$",(1,-1));
 +
label("$O$",(1,0));
 +
label("$O$",(2,-1));
 +
label("$O$",(0,1));
 +
label("$M$",(2,0));
 +
label("$M$",(1,1));
 +
label("$M$",(0,2));
 +
label("$M$",(3,-1));
 +
label("$B$",(3,0));
 +
label("$B$",(2,1));
 +
label("$B$",(1,2));
 +
label("$B$",(0,3));
 +
label("$B$",(4,-1));
 +
label("$O$",(4,0));
 +
label("$O$",(3,1));
 +
label("$O$",(2,2));
 +
label("$O$",(1,3));
 +
label("$O$",(0,4));
 +
label("$O$",(5,-1));
 +
label("$*$",(0,-1));
 
</asy>
 
</asy>
  
'''PROVING THE EXISTENCE OF SUCH A POINT'''
+
==circles==
  
We first want to prove that a point <math>X</math> exists such that <math>HX=100</math> and <math>SX=150</math>.
+
<asy>
 +
draw(Circle((0,0),3.5));
 +
draw((-3.5,0)--(3.5,0));
 +
label("7", (0,0), dir(90));
 +
dot((0,0));
 +
draw(Circle((-2,1.4),1));
 +
draw((-2,1.4)--(-1,1.4));
 +
label("1", (-1.5,1.4),dir(90));
 +
</asy>
  
First we draw a circle with center <math>H</math> and radius <math>100</math>. This denotes the locus of all points <math>P</math> such that <math>HP=100</math>.
+
==more circles==
  
Now we draw a circle with center <math>S</math> and radius <math>150</math>. This denotes the locus of all points <math>P</math> such that <math>SP=150</math>.
+
<asy>
 +
draw(Circle((0,0),20));
 +
draw(Circle((0,0),14));
 +
dot((0,0));
 +
dot(20*dir(60));
 +
dot(14*dir(180));
 +
dot((-17,29.445));
 +
draw(20*dir(60)--14*dir(180)--(-17,29.445)--cycle);
 +
label("O",(0,0),dir(0));
 +
label("A",20*dir(60),dir(60));
 +
label("B",(-14,0),dir(180));
 +
label("P",(-17,29.445),dir(180));
 +
draw((-17,29.445)--(0,0),red);
 +
</asy>
  
Note that the intersection of these two locuses are the points which satisfy both conditions.
+
==checkerboasrd==
 
We see that there are two points which satisfy both locuses: <math>X</math> and <math>X'</math>.
 
  
We get rid of the extraneous solution, <math>X'</math>, because it does not satisfy the need that the treasure is on land.
+
<asy>
 +
for(int i = 0; i < 8; ++i){
 +
for(int j = 0; j < 8; ++j){
 +
filldraw((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--cycle,gray((i%3+3*(j%3))/8));
 +
}
 +
}
 +
 
 +
</asy>
 +
 
 +
==Fermat point==
 +
 
 +
<asy>
 +
import math;
 +
 
 +
draw((0,0)--(4,0)--(0,3)--cycle);
 +
draw((0,0)--3*dir(30)--4*dir(-60)--cycle);
 +
draw((4,0)--4*dir(60)--(4*dir(60)+3*dir(30))--cycle);
 +
draw((0,3)--3*dir(150)--(3*dir(150)+4*dir(-60))--cycle);
 +
 
 +
draw((0,0)--(4*dir(60)+3*dir(30)),blue+linetype("8 8"));
 +
draw((0,3)--4*dir(-60),blue+linetype("8 8"));
 +
draw((4,0)--3*dir(150),blue+linetype("8 8"));
 +
 
 +
draw((0,0)--(3*dir(150)+4*dir(-60)),red+linetype("8 8 0 8"));
 +
draw((0,3)--4*dir(60),red+linetype("8 8 0 8"));
 +
draw((4,0)--3*dir(30),red+linetype("8 8 0 8"));</asy>
 +
 
 +
==cenn driagrma==
  
Therefore the point that we seek is <math>X</math>, and we have proved its existence. <math>\Box</math>
+
<asy>
 +
draw(Circle((1,0),2));
 +
draw(Circle((-1,0),2));
 +
label("3",(0,0));
 +
label("2", (2,0));
 +
label("2", (-2,0));
 +
label("Spotted",(-2,2),dir(90));
 +
label("5 Legs",(2,2),dir(90));
 +
</asy>
  
Note that we are assuming that <math>SH\le SX+HX</math>. This is true because the diagram given is to scale.
+
==cyclic square==
  
'''PROVING THAT THE POINT IS UNIQUE'''
+
<asy>
 +
draw(Circle((0,0),0.5));
 +
draw(0.5*dir(15)--0.5*dir(105)--0.5*dir(195)--0.5*dir(285)--cycle);
 +
label(scale(6)*"CS",(0,0));
 +
</asy>
  
 
<asy>
 
<asy>
unitsize(0.2mm);
+
import olympiad;
pair H,S,X,Y,A,B,C;
+
 
H = (25,0);
+
size(10cm);
S = (0,115);
+
draw(Circle((-5,0),4));
X = (122,26);
+
fill((0,0)--(-10,-1)--(-10,-5)--(0,-5)--cycle,white);
Y = (120,50);
+
dot(4*dir(60)-5);
A = ((H+X)/2);
+
dot(4*dir(30)-5);
B = ((S+X)/2);
+
dot(4*dir(100)-5);
C = ((H+S)/2);
+
dot(4*dir(150)-5);
draw(H--S--X--cycle);
+
label(scale(5)*"Cyclic Squares",(0,0));
draw(H--Y--S,linetype("8 8"));
+
draw((-0.75,2)--(-0.25,-2)--(9.25,-0.9)--(9,1.1));
label("100",A,dir(-90));
+
draw(rightanglemark((-0.75,2),(-0.25,-2),(9.25,-0.9)));
label("150",B,dir(-120));
+
draw(rightanglemark((-0.25,-2),(9.25,-0.9),(9,1.1)));
label("H",H,dir(-90));
 
label("S",S,dir(90));
 
label("X",X,dir(0));
 
label("X'",Y,dir(45));
 
label("n",C,dir(210));
 
 
</asy>
 
</asy>
  
Note that if there is another point <math>X'</math>, then it must satisfy that <math>HX'=100</math> and <math>SX'=150</math>.
 
  
We can let <math>SH=n</math>. The triangle <math>SHX'</math> therefore has sides of length <math>n</math>, <math>100</math>, and <math>150</math>.
+
==diagram ==
  
However, because of SSS congruency, <math>SHX'</math> must be congruent to <math>SHX</math>. Since <math>SX'=SX</math>, then <math>X</math> and <math>X'</math> are the same point, and therefore <math>X</math> is unique. <math>\Box</math>
 
  
Note that there is an extraneous solution for <math>X'</math> that is to the left of the line <math>\overline{SH}</math>.
+
<cmath>\text{Given that }\theta\le 90^{\circ}\text{, prove }a^2+b^2\le D^2\text{, where }D\text{ is the diameter of the circle.}</cmath>
 +
<asy>
 +
draw(Circle((0,0),1));
 +
draw(dir(0)--dir(40)--dir(170)--dir(260)--dir(0)--dir(170)--dir(260)--dir(40));
  
However, since this does not meet the requirements of the point being on land, it does not work.
+
label("$\theta$", extension(dir(0),dir(170),dir(40),dir(260))-0.05*dir(30),-dir(30));
 +
label("a",(dir(170)+dir(260))/2,dir(215));
 +
label("b",(dir(0)+dir(40))/2,-dir(20));
 +
 
 +
</asy>
 +
 
 +
==Cyclic squares DOTS DTOS TDORS==
 +
 
 +
<asy>
 +
draw(Circle((0,0),90));
 +
 
 +
draw(Circle((30,40),10));
 +
 
 +
dot((37,38));
 +
 
 +
dot((25,39));
 +
 
 +
dot((20,30),gray(0.5));
 +
 
 +
dot((22,54),gray(0.6));
 +
dot((36,27),gray(0.5));
 +
dot((38,50),gray(0.4));
 +
 
 +
dot((10,36),gray(0.8));
 +
 
 +
dot((50,40),gray(0.75));
 +
 
 +
dot((30,20),gray(0.7));
 +
 
 +
dot((0,54),gray(0.85));
 +
dot((4,23),gray(0.85));
 +
dot((60,25),gray(0.9));
 +
dot((30,70),gray(0.9));
 +
</asy>

Latest revision as of 19:27, 30 July 2025

L Edit this page

This Sandbox page is for experimenting with AoPS Wiki editing.

Feel free to test formatting, links, or templates here. If you're new, you may find the AoPS Wiki editing tutorial helpful.

Note: This page is cleared regularly and without warning. Please do not add offensive, copyrighted, or inappropriate content.

Bobthesmartypants's Sandbox

Solution 1

[asy] path Q; Q=(0,0)--(1,2)--(5,2)--(4,0)--cycle; draw(Q); draw((0,0)--(1.5,1)); label("D",(0,0),S); draw((1,2)--(1.5,1)); label("A",(1,2),N); draw((5,2)--(1.5,1)); label("B",(5,2),N); draw((4,0)--(1.5,1)); label("C",(4,0),S); draw((2,0)--(1.5,1),linetype("8 8")); label("E",(2,0),S); draw((2/3,4/3)--(1.5,1),linetype("8 8")); label("F",(2/3,4/3),W); label("P",(1.5,1),NNE); [/asy]

First, continue $\overline{AP}$ to hit $\overline{CD}$ at $E$. Also continue $\overline{CP}$ to hit $\overline{AD}$ at $F$.

We have that $\angle PAB=\angle PCB$. Because $\overline{AB}\parallel\overline{CD}$, we have $\angle PAB=\angle PED$.

Similarly, because $\overline{AD}\parallel\overline{BC}$, we have $\angle PCB=\angle PFD$.

Therefore, $\angle PAB=\angle PED=\angle PCB=\angle PFD$.

We also have that $\angle ADC=\angle ABC$ because $ABCD$ is a parallelogram, and $\angle APC=\angle FPE$.

Therefore, $ABCP\sim FDEP$. This means that $\dfrac{FD}{AB}=\dfrac{FP}{AP}=\dfrac{DP}{BP}$, so $\Delta ABP\sim\Delta FDP$.

Therefore, $\angle PBA=\angle PDA$. $\Box$


Solution 2

Note that $\dfrac{1}{n}$ is rational and $n$ is not divisible by $2$ nor $5$ because $n>11$.

This means the decimal representation of $\dfrac{1}{n}$ is a repeating decimal.

Let us set $a_1a_2\cdots a_x$ as the block that repeats in the repeating decimal: $\dfrac{1}{n}=0.\overline{a_1a_2\cdots a_x}$.

($a_1a_2\cdots a_x$ written without the overline used to signify one number so won't confuse with notation for repeating decimal)

The fractional representation of this repeating decimal would be $\dfrac{1}{n}=\dfrac{a_1a_2\cdots a_x}{10^x-1}$.

Taking the reciprocal of both sides you get $n=\dfrac{10^x-1}{a_1a_2\cdots a_x}$.

Multiplying both sides by $a_1a_2\cdots a_n$ gives $n(a_1a_2\cdots a_x)=10^x-1$.

Since $10^x-1=9\times \underbrace{111\cdots 111}_{x\text{ times}}$ we divide $9$ on both sides of the equation to get $\dfrac{n(a_1a_2\cdots a_x)}{9}=\underbrace{111\cdots 111}_{x\text{ times}}$.

Because $n$ is not divisible by $3$ (therefore $9$) since $n>11$ and $n$ is prime, it follows that $n|\underbrace{111\cdots 111}_{x\text{ times}}$. $\Box$

Picture 1

[asy]draw(Circle((1,1),2)); draw(Circle((sqrt(2),sqrt(3)/2),1)); dot((8/5,2/5)); dot((1,1)); draw((1,1)--(8/5,2/5),linetype("8 8")); label("a",(6/5,7/10),SSW); draw((8/5,2/5)--(12/5,-2/5),linetype("8 8")); label("b",(2,0),SSW); [/asy] \[\text{Find the probability that }b>a \text{.}\]

[asy]unitsize(2inch); import olympiad; path c2 = dir(90)-dir(120)..dir(90)-dir(150)..dir(90)-dir(180); path c1 = dir(90)-dir(0)..dir(90)-dir(30)..dir(90)-dir(60); path c3 = dir(120)..dir(150)..dir(180); path c4 = dir(0)..dir(30)..dir(60);  draw(dir(0)..dir(30)..dir(60)..dir(90)..dir(120)..dir(150)..dir(180)--dir(0)); draw(dir(90)-dir(0)..dir(90)-dir(30)..dir(90)-dir(60)..dir(90)-dir(90)..dir(90)-dir(120)..dir(90)-dir(150)..dir(90)-dir(180)--dir(90)-dir(0)); draw((-1.2,0.8)--(1.2,0.8)); label("$l_{-n}$", (1.2,0.8),dir(0)); draw((-1.2,0.5)--(1.2,0.5)); label("$l_0$", (1.2,0.5),dir(0)); draw((-1.2,0.2)--(1.2,0.2)); label("$l_n$", (1.2,0.2),dir(0)); label("$\vdots$", (1.2, 0.4), dir(0)); label("$\vdots$", (0, 0.4)); label("$\vdots$", (1.2, 0.65), dir(0)); label("$\vdots$", (0, 0.65));  label("$A_{-n}$", intersectionpoint(c1, (-1.2, 0.8)--(1.2, 0.8)), dir(135)); label("$C_{-n}$", intersectionpoint(c3, (-1.2, 0.8)--(1.2, 0.8)), dir(135)); label("$D_{-n}$", intersectionpoint(c4, (-1.2, 0.8)--(1.2, 0.8)), dir(45)); label("$B_{-n}$", intersectionpoint(c2, (-1.2, 0.8)--(1.2, 0.8)), dir(45));  label("$X$", intersectionpoint(c1, (-1.2, 0.5)--(1.2, 0.5)), dir(150)); label("$Y$", intersectionpoint(c2, (-1.2, 0.5)--(1.2, 0.5)), dir(30));  label("$C_{n}$", intersectionpoint(c3, (-1.2, 0.2)--(1.2, 0.2)), dir(135)); label("$A_{n}$", intersectionpoint(c1, (-1.2, 0.2)--(1.2, 0.2)), dir(45)); label("$B_{n}$", intersectionpoint(c2, (-1.2, 0.2)--(1.2, 0.2)), dir(135)); label("$D_{n}$", intersectionpoint(c4, (-1.2, 0.2)--(1.2, 0.2)), dir(45));  dot(intersectionpoint(c1, (-1.2, 0.8)--(1.2, 0.8))); dot(intersectionpoint(c2, (-1.2, 0.8)--(1.2, 0.8))); dot(intersectionpoint(c3, (-1.2, 0.8)--(1.2, 0.8))); dot(intersectionpoint(c4, (-1.2, 0.8)--(1.2, 0.8)));  dot(intersectionpoint(c1, (-1.2, 0.5)--(1.2, 0.5))); dot(intersectionpoint(c2, (-1.2, 0.5)--(1.2, 0.5))); dot(intersectionpoint(c3, (-1.2, 0.5)--(1.2, 0.5))); dot(intersectionpoint(c4, (-1.2, 0.5)--(1.2, 0.5)));  dot(intersectionpoint(c1, (-1.2, 0.2)--(1.2, 0.2))); dot(intersectionpoint(c2, (-1.2, 0.2)--(1.2, 0.2))); dot(intersectionpoint(c3, (-1.2, 0.2)--(1.2, 0.2))); dot(intersectionpoint(c4, (-1.2, 0.2)--(1.2, 0.2))); [/asy]

Two half-circles are drawn as shown above, with a line $l_0$ throught the two intersections points, $X,Y$ of the half-circles. Lines $l_k$ for $k=-n\to n$ parallel to the bases of the half-circles are drawn such that the distances between $l_k$ and $l_0$ and $l_{-k}$ and $l_0$ are always the same for all $k=1\to n$.

The intersection points of $l_k$ with one of the half-circles are labeled $A_k, B_k$, and with the other half-circle at $C_k,D_k$, as shown in the diagram.

Prove that \[\prod_{k=-n}^n |A_kB_k|+|C_kD_k| \ge \prod_{k=-n}^n |A_kD_k|+|B_kC_k|\]

Picture 2

[asy] for (int i=0;i<6;i=i+1){ draw(dir(60*i)--dir(60*i+60)); } draw(dir(120)--(dir(0)+dir(-60))/2); draw(dir(180)--(dir(60)+dir(0))/2); fill(dir(120)--dir(180)--intersectionpoint(dir(120)--(dir(0)+dir(-60))/2,dir(180)--(dir(60)+dir(0))/2)--cycle,grey); fill((dir(0)+dir(-60))/2--dir(0)--(dir(60)+dir(0))/2--intersectionpoint(dir(120)--(dir(0)+dir(-60))/2,dir(180)--(dir(60)+dir(0))/2)--cycle,grey); [/asy] \[\text{Prove the shaded areas are equal.}\] [asy] for(int i = 0; i < 8; ++i){   for(int j = 0; j < 8; ++j){     filldraw((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--cycle,black);   } } for(int i = 1; i < 7; ++i){   filldraw((i,7-i)--(i+1,7-i)--(i+1,8-i)--(i,8-i)--cycle,white); } for(int i = 0; i < 5; ++i){   filldraw((i,4-i)--(i+1,4-i)--(i+1,5-i)--(i,5-i)--cycle,white); }  for(int i = 0; i < 5; ++i){   filldraw((8-i,4+i)--(7-i,4+i)--(7-i,3+i)--(8-i,3+i)--cycle,white); }  filldraw((1,0)--(2,0)--(2,1)--(1,1)--cycle,white); filldraw((0,1)--(0,2)--(1,2)--(1,1)--cycle,white); filldraw((7,8)--(6,8)--(6,7)--(7,7)--cycle,white); filldraw((8,7)--(8,6)--(7,6)--(7,7)--cycle,white); [/asy]

physics problem

[asy]size(100,100); draw((0,0)--(0,10)); draw(Circle((1,1),1)); dot((0,0)); draw(9.5*dir(80)..9.5*dir(70)..9.5*dir(60),EndArrow()); label("A",(-1,5),dir(180));[/asy]

[asy] size(85,85); draw((0,0)--10*dir(60)); draw(Circle((sqrt(3),1),1)); dot((0,0)); draw(9.5*dir(50)..9.5*dir(40)..9.5*dir(30),EndArrow()); label("B",(0,5),dir(0)); [/asy]

[asy] size(110,110); draw((0,0)--10*dir(11.42)); draw(Circle((10,1),1)); dot((0,0)); label("C",(5,1.5),dir(90)); [/asy]

Solution

[asy] import olympiad;   size(350,350); draw((0,0)--10*dir(60)); draw(Circle((sqrt(3),1),1)); dot((0,0)); draw((-1,0)--(7,0),grey); draw((0,0)--(sqrt(3),1),linetype("8 8")); draw((0,0)--(0,5),grey); draw(sqrt(3)*dir(60)--(sqrt(3),1)--(sqrt(3),0),linetype("8 8")); draw(anglemark((1,0),(0,0),dir(30))); label("$\varphi$",0.3*dir(15),dir(15)); draw(anglemark(dir(60),(0,0),(0,1))); label("$\theta$",0.3*dir(75),dir(75)); label("$1$",(sqrt(3),0.5),dir(0)); label("$\frac{1}{\tan\varphi}$",(sqrt(3)/2,0),dir(-90)); [/asy]

[asy] import olympiad;   size(300,300); draw((0,0)--10*dir(11.42)); draw(Circle((10,1),1)); dot((0,0)); draw((-1,0)--(12,0),grey); draw((0,0)--(0,3),grey); draw(anglemark(10*dir(11.42),(0,0),(0,1))); label("$\theta$",0.3*dir(50.71),dir(50.71)); draw((0,0)--(10,1),linetype("8 8")); draw(10*dir(11.42)--(10,1)--(10,0),linetype("8 8")); label("$1$",(10,0.5),dir(0)); label("$10$",(5,0),dir(-90)); label("$\varphi$",3.4*dir(2.855),dir(2.855)); markscalefactor=0.4; draw(anglemark((1,0),(0,0),dir(5.71))); [/asy]

inscribed triangle

[asy] draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); draw(dir(56)--dir(230),green); draw(dir(-23)--dir(-98),red);[/asy]

[asy] draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); draw(dir(0)--dir(36),red); draw(dir(0)--dir(72),red); draw(dir(0)--dir(108),red); draw(dir(0)--dir(144),green); draw(dir(0)--dir(180),green); draw(dir(0)--dir(216),green); draw(dir(0)--dir(-36),red); draw(dir(0)--dir(-72),red); draw(dir(0)--dir(-108),red); [/asy]

[asy] draw((dir(30)--dir(150)--dir(270)--dir(30)..dir(150)..dir(270)..dir(30)--cycle)); draw(dir(-72)--dir(180+72),red); draw(dir(-54)--dir(180+54),red); draw(dir(-36)--dir(180+36),red); draw(dir(-18)--dir(180+18),green); draw(dir(-0)--dir(180+0),green); draw(dir(72)--dir(180-72),red); draw(dir(54)--dir(180-54),red); draw(dir(36)--dir(180-36),red); draw(dir(18)--dir(180-18),green);  [/asy]

[asy] import olympiad; size(300);  draw(dir(0)..dir(60)..dir(120)..dir(180)--cycle); draw((0,0)--dir(30)--dir(150)--cycle); draw((0,0)--dir(90)); label("$r$",0.5*dir(30),dir(-60)); label("$r$",0.5*dir(150),dir(240)); label("$\frac{r}{2}$",0.25*dir(90),dir(0)); label("$\frac{r}{2}$",0.75*dir(90),dir(0)); markscalefactor=0.01; draw(anglemark(dir(90),(0,0),dir(150))); draw(anglemark((0,0),dir(150),dir(30))); draw(rightanglemark(dir(150),0.5*dir(90),(0,0))); label("$60^{\circ}$",0.07*dir(120),dir(120)); label("$30^{\circ}$",0.9*dir(150),dir(0));[/asy]

[asy]draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); draw(Circle((0,0),0.5)); draw(dir(0)--dir(45),red); dot((dir(0)+dir(45))/2,red); draw(dir(125)--dir(185),red); dot((dir(125)+dir(185))/2,red); draw(dir(240)--dir(325),red); dot((dir(240)+dir(325))/2,red); draw(dir(65)--dir(165),red); dot((dir(65)+dir(165))/2,red); draw(dir(200)--dir(254),red); dot((dir(200)+dir(254))/2,red); draw(dir(80)--dir(205),green); dot((dir(80)+dir(205))/2,green); draw(dir(200)--dir(345),green); dot((dir(200)+dir(345))/2,green); draw(dir(220)--dir(385),green); dot((dir(220)+dir(385))/2,green); draw(dir(-60)--dir(125),green); dot((dir(-60)+dir(125))/2,green); draw(dir(160)--dir(360),green); dot((dir(160)+dir(360))/2,green);[/asy]

[asy]draw((dir(0)--dir(120)--dir(240)--dir(0)..dir(120)..dir(240)..dir(0)--cycle)); draw(Circle((0,0),0.5)); draw((0,0)--0.5*dir(-60)); draw((0,0)--dir(120)); label("$r$",0.25*dir(-60),dir(-150)); label("$R$",0.4*dir(120),dir(210)); dot((0,0));[/asy]

moar images

[asy] import olympiad; markscalefactor=0.01;  draw((-1,0)--(1,0)); draw((-1,0)--dir(30)--(1,0)); dot(incenter(dir(180),dir(30),dir(0))); draw(rightanglemark(dir(180),dir(30),dir(0)));  draw((-1,0)--dir(80)--(1,0)); dot(incenter(dir(180),dir(80),dir(0))); draw(rightanglemark(dir(180),dir(80),dir(0))); draw((-1,0)--dir(140)--(1,0)); dot(incenter(dir(180),dir(140),dir(0))); draw(rightanglemark(dir(180),dir(140),dir(0)));  draw((-1,0)--dir(200)--(1,0)); dot(incenter(dir(180),dir(200),dir(0))); draw(rightanglemark(dir(180),dir(200),dir(0)));  draw((-1,0)--dir(250)--(1,0)); dot(incenter(dir(180),dir(250),dir(0))); draw(rightanglemark(dir(180),dir(250),dir(0))); draw((-1,0)--dir(320)--(1,0)); dot(incenter(dir(180),dir(320),dir(0))); draw(rightanglemark(dir(180),dir(320),dir(0)));  label("$1$",(0,0),dir(90)); draw(Circle((0,0),1),linetype("8 8"));[/asy]


[asy] import olympiad; markscalefactor=0.01; draw((-1,0)--(1,0));  draw((-1,0)--dir(80)--(1,0)); dot(incenter(dir(180),dir(80),dir(0))); draw((-1,0)--incenter(dir(180),dir(80),dir(0))--(1,0),linetype("8 8")); draw(rightanglemark(dir(180),dir(80),dir(0)));  label("$A$",(-1,0),dir(180)); label("$B$",(1,0),dir(0)); label("$C$",dir(80),dir(90)); label("$I$",incenter(dir(180),dir(80),dir(0)),dir(90)); draw(Circle((0,0),1),linetype("8 8"));[/asy]

[asy] import olympiad; markscalefactor=0.01; draw((-1,0)--(1,0));  draw((-1,0)--dir(80)--(1,0)); dot(incenter(dir(180),dir(80),dir(0))); draw(rightanglemark(dir(180),dir(80),dir(0))); draw(dir(180)..incenter(dir(180),dir(80),dir(0))..dir(0)); draw(Circle((0,-1),sqrt(2)),linetype("8 8"));   draw(Circle((0,0),1),linetype("8 8"));[/asy]

[asy] import olympiad; markscalefactor=0.01;  fill(dir(0)..incenter(dir(180),dir(260),dir(0))..dir(180)--dir(180)..incenter(dir(180),dir(80),dir(0))..dir(0)--cycle,grey); draw((-1,0)--(1,0)); draw(dir(180)..incenter(dir(180),dir(80),dir(0))..dir(0)); draw(Circle((0,-1),sqrt(2))); draw(dir(180)..incenter(dir(180),dir(260),dir(0))..dir(0)); draw(Circle((0,1),sqrt(2))); draw(dir(0)--dir(90)--dir(180)--dir(-90)--cycle);[/asy]

yay

[asy] import olympiad;  draw(Circle((0,0),1)); draw((0,0)--dir(75)); draw((1.5,0)--(-1.5,0),grey); draw((0,1.5)--(0,-1.5),grey); markscalefactor=0.01; draw(anglemark(dir(0),(0,0),dir(75))); label("$\theta$",0.07*dir(37.5),dir(37.5)); draw(dir(180)--dir(75)--dir(0)); label("$P$",dir(75),dir(75)); label("$A$",dir(0),dir(0)); label("$B$",dir(180),dir(180));[/asy]

solution reflection

[asy]draw(dir(0)--(0,0)--dir(15)--(0,0)--dir(30)); draw(dir(0)--dir(15)--dir(30),linetype("8 8")); dot(0.75*dir(7)); draw(0.75*dir(7.5)--0.574*dir(15)--0.4*dir(0)); draw(0.574*dir(15)--0.4062*dir(30),linetype("8 8")); label("$A$",(0,0),dir(180)); label("$B$",dir(15),dir(15)); label("$C$",dir(0),dir(0)); label("$C'$",dir(30),dir(30));[/asy]


[asy] for(int i = 0; i < 60; ++i){   draw((0,0)--dir(6*i)); draw(dir(6*i)--dir(6*i+6),linetype("8 8")); } draw(1.2*dir(3)--1.2*dir(177)); label("Diagram not to Scale",dir(-90),dir(-90));[/asy]

origami

[asy]draw((1,1)--(-1,1)--(-1,-1)--(1,-1)--cycle); dot((0,0)); label("$O$",(0,0),dir(0)); dot((-0.5,0.75)); label("$P$",(-0.5,0.75),dir(0));[/asy]

[asy]draw((11/16,1)--(1,1)--(1,-1)--(-1,-1)--(-1,-1/8)); draw((-1,-1/8)--(-1,1)--(11/16,1),linetype("8 8")); dot((0,0)); label("$O$",(0,0),dir(0)); dot((-0.5,0.75)); label("$P$",(-0.5,0.75),dir(0)); draw((-1,-1/8)--(11/16,1)--(1/26,-29/52)--cycle); draw((-0.5,0.7)..(-0.3,0.3)..(-0.05,0.05),Arrow());[/asy]

combos

[asy]label("$C$",(0,0)); label("$C$",(1,-1)); label("$O$",(1,0)); label("$O$",(2,-1)); label("$O$",(0,1)); label("$M$",(2,0)); label("$M$",(1,1)); label("$M$",(0,2)); label("$M$",(3,-1)); label("$B$",(3,0)); label("$B$",(2,1)); label("$B$",(1,2)); label("$B$",(0,3)); label("$B$",(4,-1)); label("$O$",(4,0)); label("$O$",(3,1)); label("$O$",(2,2)); label("$O$",(1,3)); label("$O$",(0,4)); label("$O$",(5,-1)); label("$*$",(0,-1)); [/asy]

circles

[asy] draw(Circle((0,0),3.5)); draw((-3.5,0)--(3.5,0)); label("7", (0,0), dir(90)); dot((0,0)); draw(Circle((-2,1.4),1)); draw((-2,1.4)--(-1,1.4)); label("1", (-1.5,1.4),dir(90)); [/asy]

more circles

[asy] draw(Circle((0,0),20)); draw(Circle((0,0),14)); dot((0,0)); dot(20*dir(60)); dot(14*dir(180)); dot((-17,29.445)); draw(20*dir(60)--14*dir(180)--(-17,29.445)--cycle); label("O",(0,0),dir(0)); label("A",20*dir(60),dir(60)); label("B",(-14,0),dir(180)); label("P",(-17,29.445),dir(180)); draw((-17,29.445)--(0,0),red); [/asy]

checkerboasrd

[asy] for(int i = 0; i < 8; ++i){ for(int j = 0; j < 8; ++j){ filldraw((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--cycle,gray((i%3+3*(j%3))/8)); } }  [/asy]

Fermat point

[asy] import math;  draw((0,0)--(4,0)--(0,3)--cycle); draw((0,0)--3*dir(30)--4*dir(-60)--cycle); draw((4,0)--4*dir(60)--(4*dir(60)+3*dir(30))--cycle); draw((0,3)--3*dir(150)--(3*dir(150)+4*dir(-60))--cycle);  draw((0,0)--(4*dir(60)+3*dir(30)),blue+linetype("8 8")); draw((0,3)--4*dir(-60),blue+linetype("8 8")); draw((4,0)--3*dir(150),blue+linetype("8 8"));  draw((0,0)--(3*dir(150)+4*dir(-60)),red+linetype("8 8 0 8")); draw((0,3)--4*dir(60),red+linetype("8 8 0 8")); draw((4,0)--3*dir(30),red+linetype("8 8 0 8"));[/asy]

cenn driagrma

[asy] draw(Circle((1,0),2)); draw(Circle((-1,0),2)); label("3",(0,0)); label("2", (2,0)); label("2", (-2,0)); label("Spotted",(-2,2),dir(90)); label("5 Legs",(2,2),dir(90)); [/asy]

cyclic square

[asy] draw(Circle((0,0),0.5)); draw(0.5*dir(15)--0.5*dir(105)--0.5*dir(195)--0.5*dir(285)--cycle); label(scale(6)*"CS",(0,0)); [/asy]

[asy] import olympiad;  size(10cm); draw(Circle((-5,0),4)); fill((0,0)--(-10,-1)--(-10,-5)--(0,-5)--cycle,white); dot(4*dir(60)-5); dot(4*dir(30)-5); dot(4*dir(100)-5); dot(4*dir(150)-5); label(scale(5)*"Cyclic Squares",(0,0)); draw((-0.75,2)--(-0.25,-2)--(9.25,-0.9)--(9,1.1)); draw(rightanglemark((-0.75,2),(-0.25,-2),(9.25,-0.9))); draw(rightanglemark((-0.25,-2),(9.25,-0.9),(9,1.1))); [/asy]


diagram

\[\text{Given that }\theta\le 90^{\circ}\text{, prove }a^2+b^2\le D^2\text{, where }D\text{ is the diameter of the circle.}\] [asy] draw(Circle((0,0),1)); draw(dir(0)--dir(40)--dir(170)--dir(260)--dir(0)--dir(170)--dir(260)--dir(40));  label("$\theta$", extension(dir(0),dir(170),dir(40),dir(260))-0.05*dir(30),-dir(30)); label("a",(dir(170)+dir(260))/2,dir(215)); label("b",(dir(0)+dir(40))/2,-dir(20));  [/asy]

Cyclic squares DOTS DTOS TDORS

[asy] draw(Circle((0,0),90));  draw(Circle((30,40),10));  dot((37,38));  dot((25,39));  dot((20,30),gray(0.5));  dot((22,54),gray(0.6)); dot((36,27),gray(0.5)); dot((38,50),gray(0.4));  dot((10,36),gray(0.8));  dot((50,40),gray(0.75));  dot((30,20),gray(0.7));  dot((0,54),gray(0.85)); dot((4,23),gray(0.85)); dot((60,25),gray(0.9)); dot((30,70),gray(0.9)); [/asy]