Difference between revisions of "1981 AHSME Problems/Problem 19"

(created solutions page (Accidentally put it in main page before) what the hell were the answer choices?)
 
(Added marked diagram for solution.)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Problem 19==
 
==Problem 19==
In <math>\triangle ABC</math>, <math>M</math> is the midpoint of side <math>BC</math>, <math>AN</math> bisects <math>\angle BAC</math>, and <math>BN\perp AN</math>. If sides <math>AB</math> and <math>AC</math> have lengths <math>14</math> and <math>19</math>, respectively, then find <math>MN</math>.
+
In <math>\triangle ABC</math>, <math>M</math> is the midpoint of side <math>BC</math>, <math>AN</math> bisects <math>\angle BAC</math>, <math>BN\perp AN</math>, and <math>\theta</math> is the measure of <math>\angle BAC</math>. If sides <math>AB</math> and <math>AC</math> have lengths <math>14</math> and <math>19</math>, respectively, then find <math>MN</math>.
  
 
<asy>
 
<asy>
Line 22: Line 22:
  
 
== Solution ==
 
== Solution ==
 +
 +
<asy>
 +
size(150);
 +
defaultpen(linewidth(0.7)+fontsize(10));
 +
pair B=origin, A=14*dir(42), C=intersectionpoint(B--(30,0), Circle(A,19)), M=midpoint(B--C), b=A+14*dir(A--C), N=foot(A, B, b), Q=2*N-B;
 +
draw(N--B--A--N--M--C--A^^B--M);
 +
draw(N--Q);
 +
markscalefactor=0.1;
 +
draw(rightanglemark(B,N,A));
 +
markscalefactor=0.3;
 +
draw(anglemark(B,A,N));
 +
markscalefactor=0.2;
 +
draw(anglemark(N,A,Q));
 +
markscalefactor=0.1;
 +
pair point=N;
 +
label("$A$", A, dir(point--A));
 +
label("$B$", B, dir(point--B));
 +
label("$C$", C, dir(point--C));
 +
label("$M$", M, dir(-45));
 +
label("$N$", N, dir(45));
 +
label("$Q$", Q, dir(45));
 +
 +
label(rotate(angle(dir(A--Q)))*"$14$", A--Q, dir(A--Q)*dir(90));
 +
label(rotate(angle(dir(Q--C)))*"$5$", Q--C, dir(Q--C)*dir(90));
 +
label(rotate(angle(dir(A--B)))*"$14$", A--B, dir(A--B)*dir(90));
 +
</asy>
 +
 
Extend <math>BN</math> to meet <math>AC</math> at <math>Q</math>. Then <math>\triangle BNM \sim \triangle BQC</math>, so <math>BN=NQ</math> and <math>QC=19-AQ=2MN</math>.  
 
Extend <math>BN</math> to meet <math>AC</math> at <math>Q</math>. Then <math>\triangle BNM \sim \triangle BQC</math>, so <math>BN=NQ</math> and <math>QC=19-AQ=2MN</math>.  
  
 
Since <math>\angle ANB=90^\circ = \angle ANQ</math>, <math>\angle BAN=\angle NAQ</math> (since <math>AN</math> is an angle bisector) and <math>\triangle ANB</math> and <math>\triangle ANQ</math> share side <math>AN</math>, <math>\triangle ANB \cong \triangle ANQ</math>. Thus <math>AQ=14</math>, and so <math>MN=\frac{19-AQ}{2}=\frac{5}{2}</math>, hence our answer is <math>\fbox{B}</math>.
 
Since <math>\angle ANB=90^\circ = \angle ANQ</math>, <math>\angle BAN=\angle NAQ</math> (since <math>AN</math> is an angle bisector) and <math>\triangle ANB</math> and <math>\triangle ANQ</math> share side <math>AN</math>, <math>\triangle ANB \cong \triangle ANQ</math>. Thus <math>AQ=14</math>, and so <math>MN=\frac{19-AQ}{2}=\frac{5}{2}</math>, hence our answer is <math>\fbox{B}</math>.
 +
 +
==See also==
 +
 +
{{AHSME box|year=1981|num-b=18|num-a=20}}
 +
{{MAA Notice}}

Latest revision as of 21:00, 28 June 2025

Problem 19

In $\triangle ABC$, $M$ is the midpoint of side $BC$, $AN$ bisects $\angle BAC$, $BN\perp AN$, and $\theta$ is the measure of $\angle BAC$. If sides $AB$ and $AC$ have lengths $14$ and $19$, respectively, then find $MN$.

[asy] size(150); defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, A=14*dir(42), C=intersectionpoint(B--(30,0), Circle(A,19)), M=midpoint(B--C), b=A+14*dir(A--C), N=foot(A, B, b); draw(N--B--A--N--M--C--A^^B--M); markscalefactor=0.1; draw(rightanglemark(B,N,A)); pair point=N; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, dir(point--M)); label("$N$", N, dir(30)); label(rotate(angle(dir(A--C)))*"$19$", A--C, dir(A--C)*dir(90)); label(rotate(angle(dir(A--B)))*"$14$", A--B, dir(A--B)*dir(90)); [/asy]

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ \dfrac{5}{2}\qquad\textbf{(C)}\ \dfrac{5}{2}-\sin\theta\qquad\textbf{(D)}\ \dfrac{5}{2}-\dfrac{1}{2}\sin\theta\qquad\textbf{(E)}\ \dfrac{5}{2}-\dfrac{1}{2}\sin\left(\dfrac{1}{2}\theta\right)$

Solution

[asy] size(150); defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, A=14*dir(42), C=intersectionpoint(B--(30,0), Circle(A,19)), M=midpoint(B--C), b=A+14*dir(A--C), N=foot(A, B, b), Q=2*N-B; draw(N--B--A--N--M--C--A^^B--M); draw(N--Q); markscalefactor=0.1; draw(rightanglemark(B,N,A)); markscalefactor=0.3; draw(anglemark(B,A,N)); markscalefactor=0.2; draw(anglemark(N,A,Q)); markscalefactor=0.1; pair point=N; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, dir(-45)); label("$N$", N, dir(45)); label("$Q$", Q, dir(45));  label(rotate(angle(dir(A--Q)))*"$14$", A--Q, dir(A--Q)*dir(90)); label(rotate(angle(dir(Q--C)))*"$5$", Q--C, dir(Q--C)*dir(90)); label(rotate(angle(dir(A--B)))*"$14$", A--B, dir(A--B)*dir(90)); [/asy]

Extend $BN$ to meet $AC$ at $Q$. Then $\triangle BNM \sim \triangle BQC$, so $BN=NQ$ and $QC=19-AQ=2MN$.

Since $\angle ANB=90^\circ = \angle ANQ$, $\angle BAN=\angle NAQ$ (since $AN$ is an angle bisector) and $\triangle ANB$ and $\triangle ANQ$ share side $AN$, $\triangle ANB \cong \triangle ANQ$. Thus $AQ=14$, and so $MN=\frac{19-AQ}{2}=\frac{5}{2}$, hence our answer is $\fbox{B}$.

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png