Difference between revisions of "1981 AHSME Problems/Problem 19"
(created solutions page (Accidentally put it in main page before) what the hell were the answer choices?) |
J314andrews (talk | contribs) (Added marked diagram for solution.) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Problem 19== | ==Problem 19== | ||
− | In <math>\triangle ABC</math>, <math>M</math> is the midpoint of side <math>BC</math>, <math>AN</math> bisects <math>\angle BAC</math>, | + | In <math>\triangle ABC</math>, <math>M</math> is the midpoint of side <math>BC</math>, <math>AN</math> bisects <math>\angle BAC</math>, <math>BN\perp AN</math>, and <math>\theta</math> is the measure of <math>\angle BAC</math>. If sides <math>AB</math> and <math>AC</math> have lengths <math>14</math> and <math>19</math>, respectively, then find <math>MN</math>. |
<asy> | <asy> | ||
Line 22: | Line 22: | ||
== Solution == | == Solution == | ||
+ | |||
+ | <asy> | ||
+ | size(150); | ||
+ | defaultpen(linewidth(0.7)+fontsize(10)); | ||
+ | pair B=origin, A=14*dir(42), C=intersectionpoint(B--(30,0), Circle(A,19)), M=midpoint(B--C), b=A+14*dir(A--C), N=foot(A, B, b), Q=2*N-B; | ||
+ | draw(N--B--A--N--M--C--A^^B--M); | ||
+ | draw(N--Q); | ||
+ | markscalefactor=0.1; | ||
+ | draw(rightanglemark(B,N,A)); | ||
+ | markscalefactor=0.3; | ||
+ | draw(anglemark(B,A,N)); | ||
+ | markscalefactor=0.2; | ||
+ | draw(anglemark(N,A,Q)); | ||
+ | markscalefactor=0.1; | ||
+ | pair point=N; | ||
+ | label("$A$", A, dir(point--A)); | ||
+ | label("$B$", B, dir(point--B)); | ||
+ | label("$C$", C, dir(point--C)); | ||
+ | label("$M$", M, dir(-45)); | ||
+ | label("$N$", N, dir(45)); | ||
+ | label("$Q$", Q, dir(45)); | ||
+ | |||
+ | label(rotate(angle(dir(A--Q)))*"$14$", A--Q, dir(A--Q)*dir(90)); | ||
+ | label(rotate(angle(dir(Q--C)))*"$5$", Q--C, dir(Q--C)*dir(90)); | ||
+ | label(rotate(angle(dir(A--B)))*"$14$", A--B, dir(A--B)*dir(90)); | ||
+ | </asy> | ||
+ | |||
Extend <math>BN</math> to meet <math>AC</math> at <math>Q</math>. Then <math>\triangle BNM \sim \triangle BQC</math>, so <math>BN=NQ</math> and <math>QC=19-AQ=2MN</math>. | Extend <math>BN</math> to meet <math>AC</math> at <math>Q</math>. Then <math>\triangle BNM \sim \triangle BQC</math>, so <math>BN=NQ</math> and <math>QC=19-AQ=2MN</math>. | ||
Since <math>\angle ANB=90^\circ = \angle ANQ</math>, <math>\angle BAN=\angle NAQ</math> (since <math>AN</math> is an angle bisector) and <math>\triangle ANB</math> and <math>\triangle ANQ</math> share side <math>AN</math>, <math>\triangle ANB \cong \triangle ANQ</math>. Thus <math>AQ=14</math>, and so <math>MN=\frac{19-AQ}{2}=\frac{5}{2}</math>, hence our answer is <math>\fbox{B}</math>. | Since <math>\angle ANB=90^\circ = \angle ANQ</math>, <math>\angle BAN=\angle NAQ</math> (since <math>AN</math> is an angle bisector) and <math>\triangle ANB</math> and <math>\triangle ANQ</math> share side <math>AN</math>, <math>\triangle ANB \cong \triangle ANQ</math>. Thus <math>AQ=14</math>, and so <math>MN=\frac{19-AQ}{2}=\frac{5}{2}</math>, hence our answer is <math>\fbox{B}</math>. | ||
+ | |||
+ | ==See also== | ||
+ | |||
+ | {{AHSME box|year=1981|num-b=18|num-a=20}} | ||
+ | {{MAA Notice}} |
Latest revision as of 21:00, 28 June 2025
Problem 19
In ,
is the midpoint of side
,
bisects
,
, and
is the measure of
. If sides
and
have lengths
and
, respectively, then find
.
Solution
Extend to meet
at
. Then
, so
and
.
Since ,
(since
is an angle bisector) and
and
share side
,
. Thus
, and so
, hence our answer is
.
See also
1981 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.