Difference between revisions of "1981 AHSME Problems/Problem 3"

(Solution)
(Solution)
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
==Solution==
+
==Problem==
 +
For <math>x\neq0</math>, <math>\dfrac{1}{x}+\dfrac{1}{2x}+\dfrac{1}{3x}</math> equals
  
The least common multiple of <math>\frac{1}{x}</math>, <math>\frac{1}{2x}</math>, and <math>\frac{1}{3x}</math> is <math>\frac{1}{6x}</math>.
+
<math> \textbf{(A)}\ \dfrac{1}{2x}\qquad\textbf{(B)}\ \dfrac{1}{6x}\qquad\textbf{(C)}\ \dfrac{5}{6x}\qquad\textbf{(D)}\ \dfrac{11}{6x}\qquad\textbf{(E)}\ \dfrac{1}{6x^3} </math>
  
<math>\frac{1}{x}</math> = <math>\frac{6}{6x}</math>, <math>\frac{1}{2x}</math> = <math>\frac{3}{6x}</math>, <math>\frac{1}{3x}</math> = <math>\frac{2}{6x}</math>.
+
==Solution==
  
<math>\frac{6}{6x}</math> + <math>\frac{3}{6x}</math> + <math>\frac{2}{6x}</math> = <math>\frac{11}{6x}</math>
+
The least common multiple of <math>x</math>, <math>2x</math>, and <math>3x</math> is <math>6x</math>, so <math>\frac{1}{x} + \frac{1}{2x} + \frac{1}{3x} = \frac{6}{6x}</math> + <math>\frac{3}{6x}</math> + <math>\frac{2}{6x} = \boxed{\left(\mathbf{D}\right) \frac{11}{6x}}</math>.
  
The answer is (D) <math>\frac{11}{6x}</math>.
+
== See Also ==
 +
{{AHSME box|year=1981|num-b=2|num-a=4}}
 +
{{MAA Notice}}

Latest revision as of 13:59, 29 June 2025

Problem

For $x\neq0$, $\dfrac{1}{x}+\dfrac{1}{2x}+\dfrac{1}{3x}$ equals

$\textbf{(A)}\ \dfrac{1}{2x}\qquad\textbf{(B)}\ \dfrac{1}{6x}\qquad\textbf{(C)}\ \dfrac{5}{6x}\qquad\textbf{(D)}\ \dfrac{11}{6x}\qquad\textbf{(E)}\ \dfrac{1}{6x^3}$

Solution

The least common multiple of $x$, $2x$, and $3x$ is $6x$, so $\frac{1}{x} + \frac{1}{2x} + \frac{1}{3x} = \frac{6}{6x}$ + $\frac{3}{6x}$ + $\frac{2}{6x} = \boxed{\left(\mathbf{D}\right) \frac{11}{6x}}$.

See Also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png