Difference between revisions of "2014 CEMC Gauss (Grade 8) Problems/Problem 6"

(Created page with "==Problem== The value of <math>y</math> that satisfies the equation <math>5y - 100 = 125</math> is <math> \text{ (A) }\ 45\qquad\text{ (B) }\ 100\qquad\text{ (C) }\ 25\qqua...")
 
Line 5: Line 5:
 
==Solution 1==
 
==Solution 1==
 
<math>5y - 100 = 125</math>
 
<math>5y - 100 = 125</math>
 +
 +
Adding <math>100</math> to both sides, we get:
  
 
<math>5y = 225</math>
 
<math>5y = 225</math>
Line 13: Line 15:
 
==Solution 2==
 
==Solution 2==
 
<math>5y - 100 = 125</math>
 
<math>5y - 100 = 125</math>
 +
 +
All of the terms as well as the [[coefficient]] of <math>y</math> is divisible by <math>5</math>. Dividing both sides by <math>5</math>, we get:
  
 
<math>y - 20 = 25</math>
 
<math>y - 20 = 25</math>

Revision as of 14:40, 23 April 2025

Problem

The value of $y$ that satisfies the equation $5y - 100 = 125$ is

$\text{ (A) }\  45\qquad\text{ (B) }\ 100\qquad\text{ (C) }\ 25\qquad\text{ (D) }\ -25\qquad\text{ (E) }\ -5$

Solution 1

$5y - 100 = 125$

Adding $100$ to both sides, we get:

$5y = 225$

$y = \boxed {\textbf {(A) } 45}$

~anabel.disher

Solution 2

$5y - 100 = 125$

All of the terms as well as the coefficient of $y$ is divisible by $5$. Dividing both sides by $5$, we get:

$y - 20 = 25$

$y = \boxed {\textbf {(A) } 45}$

~anabel.disher