Difference between revisions of "1982 AHSME Problems/Problem 19"
MRENTHUSIASM (talk | contribs) m (→Solution) |
MRENTHUSIASM (talk | contribs) m (→Solution) |
||
| Line 26: | Line 26: | ||
<asy> | <asy> | ||
/* Made by MRENTHUSIASM */ | /* Made by MRENTHUSIASM */ | ||
| − | size( | + | size(200); |
| − | |||
| − | + | int xMin = -2; | |
| + | int xMax = 10; | ||
| + | int yMin = -2; | ||
| + | int yMax = 4; | ||
| + | int numRays = 24; | ||
| + | |||
| + | //Draws a polar grid that goes out to a number of circles | ||
| + | //equal to big, with numRays specifying the number of rays: | ||
| + | void polarGrid(int big, int numRays) | ||
| + | { | ||
| + | for (int i = 1; i < big+1; ++i) | ||
| + | { | ||
| + | draw(Circle((0,0),i), gray+linewidth(0.4)); | ||
| + | } | ||
| + | for(int i=0;i<numRays;++i) | ||
| + | draw(rotate(i*360/numRays)*((-big,0)--(big,0)), gray+linewidth(0.4)); | ||
| + | } | ||
| + | |||
| + | //Draws the horizontal gridlines | ||
| + | void horizontalLines() | ||
| + | { | ||
| + | for (int i = yMin+1; i < yMax; ++i) | ||
| + | { | ||
| + | draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); | ||
| + | } | ||
| + | } | ||
| + | |||
| + | //Draws the vertical gridlines | ||
| + | void verticalLines() | ||
| + | { | ||
| + | for (int i = xMin+1; i < xMax; ++i) | ||
| + | { | ||
| + | draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); | ||
| + | } | ||
| + | } | ||
| + | |||
| + | //Draws the horizontal ticks | ||
| + | void horizontalTicks() | ||
| + | { | ||
| + | for (int i = yMin+1; i < yMax; ++i) | ||
| + | { | ||
| + | draw((-3/16,i)--(3/16,i), black+linewidth(1)); | ||
| + | } | ||
| + | } | ||
| + | |||
| + | //Draws the vertical ticks | ||
| + | void verticalTicks() | ||
| + | { | ||
| + | for (int i = xMin+1; i < xMax; ++i) | ||
| + | { | ||
| + | draw((i,-3/16)--(i,3/16), black+linewidth(1)); | ||
| + | } | ||
| + | } | ||
| + | |||
| + | horizontalLines(); | ||
| + | verticalLines(); | ||
| + | horizontalTicks(); | ||
| + | verticalTicks(); | ||
| + | draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); | ||
| + | draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); | ||
| + | label("$x$",(xMax,0),E); | ||
| + | label("$y$",(0,yMax),N); | ||
pair A[]; | pair A[]; | ||
| Line 47: | Line 107: | ||
label("$(4,0)$",A[2],(0,-1.5),UnFill); | label("$(4,0)$",A[2],(0,-1.5),UnFill); | ||
label("$(8,0)$",A[3],(0,-1.5),UnFill); | label("$(8,0)$",A[3],(0,-1.5),UnFill); | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
</asy> | </asy> | ||
The largest value of <math>f(x)</math> is <math>2,</math> and the smallest value of <math>f(x)</math> is <math>0.</math> So, their sum is <math>\boxed{\textbf {(B)}\ 2}.</math> | The largest value of <math>f(x)</math> is <math>2,</math> and the smallest value of <math>f(x)</math> is <math>0.</math> So, their sum is <math>\boxed{\textbf {(B)}\ 2}.</math> | ||
Revision as of 06:46, 13 September 2021
Problem
Let
for
. The sum of the largest and smallest values of
is
Solution
Note that at
one of the three absolute values is equal to
Without using absolute values, we rewrite
as a piecewise function:
which simplifies to
The graph of
is shown below.
The largest value of
is
and the smallest value of
is
So, their sum is
~MRENTHUSIASM
See Also
| 1982 AHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 18 |
Followed by Problem 20 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
| All AHSME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.