Difference between revisions of "1981 AHSME Problems/Problem 3"

(added navbox)
(Problem statement was incorrect and answer choices were missing.)
Line 1: Line 1:
 
==Problem==
 
==Problem==
What is the least common multiple of <math>{\frac{1}{x}}</math>, <math>\frac{1}{2x}</math>, and <math>\frac{1}{3x}</math> is <math>\frac{1}{6x}</math>?
+
For <math>x\neq0</math>, <math>\dfrac{1}{x}+\dfrac{1}{2x}+\dfrac{1}{3x}</math> equals
 +
 
 +
<math> \textbf{(A)}\ \dfrac{1}{2x}\qquad\textbf{(B)}\ \dfrac{1}{6x}\qquad\textbf{(C)}\ \dfrac{5}{6x}\qquad\textbf{(D)}\ \dfrac{11}{6x}\qquad\textbf{(E)}\ \dfrac{1}{6x^3} </math>
  
 
==Solution==
 
==Solution==

Revision as of 13:27, 28 June 2025

Problem

For $x\neq0$, $\dfrac{1}{x}+\dfrac{1}{2x}+\dfrac{1}{3x}$ equals

$\textbf{(A)}\ \dfrac{1}{2x}\qquad\textbf{(B)}\ \dfrac{1}{6x}\qquad\textbf{(C)}\ \dfrac{5}{6x}\qquad\textbf{(D)}\ \dfrac{11}{6x}\qquad\textbf{(E)}\ \dfrac{1}{6x^3}$

Solution

The least common multiple of ${\frac{1}{x}}$, $\frac{1}{2x}$, and $\frac{1}{3x}$ is $\frac{1}{6x}$.

$\frac{1}{x}$ = $\frac{6}{6x}$, $\frac{1}{2x}$ = $\frac{3}{6x}$, $\frac{1}{3x}$ = $\frac{2}{6x}$.

$\frac{6}{6x}$ + $\frac{3}{6x}$ + $\frac{2}{6x}$ = $\frac{11}{6x}$

The answer is $\boxed{\left(D\right) \frac{11}{6x}}$.

See Also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions