Difference between revisions of "1981 AHSME Problems/Problem 10"

(Created page with "If <math>(p, q)</math> is a point on line <math>L</math>, then by symmetry <math>(q, p)</math> must be a point on <math>K</math>. Therefore, the points on <math>K</math> satis...")
 
 
Line 1: Line 1:
 +
==Problem 10==
 +
The lines <math>L</math> and <math>K</math> are symmetric to each other with respect to the line <math>y=x</math>. If the equation of the line <math>L</math> is <math>y=ax+b</math> with <math>a\neq 0</math> and <math>b\neq 0</math>, then the equation of <math>K</math> is <math>y=</math>
 +
 +
<math> \textbf{(A)}\ \dfrac{1}{a}x+b\qquad\textbf{(B)}\ -\dfrac{1}{a}x+b\qquad\textbf{(C)}\ \dfrac{1}{a}x-\dfrac{b}{a}\qquad\textbf{(D)}\ \dfrac{1}{a}x+\dfrac{b}{a}\qquad\textbf{(E)}\ \dfrac{1}{a}x-\dfrac{b}{a} </math>
 +
 +
==Solution==
 +
 
If <math>(p, q)</math> is a point on line <math>L</math>, then by symmetry <math>(q, p)</math> must be a point on <math>K</math>. Therefore, the points on <math>K</math> satisfy <math>x=ay+b</math>.Solving for <math>y</math> yields <math>y = \dfrac xa-\dfrac ba</math>. <math>\Longrightarrow \boxed{E}</math>
 
If <math>(p, q)</math> is a point on line <math>L</math>, then by symmetry <math>(q, p)</math> must be a point on <math>K</math>. Therefore, the points on <math>K</math> satisfy <math>x=ay+b</math>.Solving for <math>y</math> yields <math>y = \dfrac xa-\dfrac ba</math>. <math>\Longrightarrow \boxed{E}</math>
 +
 +
==See also==
 +
 +
{{AHSME box|year=1981|num-b=9|num-a=11}}
 +
{{MAA Notice}}

Latest revision as of 13:42, 28 June 2025

Problem 10

The lines $L$ and $K$ are symmetric to each other with respect to the line $y=x$. If the equation of the line $L$ is $y=ax+b$ with $a\neq 0$ and $b\neq 0$, then the equation of $K$ is $y=$

$\textbf{(A)}\ \dfrac{1}{a}x+b\qquad\textbf{(B)}\ -\dfrac{1}{a}x+b\qquad\textbf{(C)}\ \dfrac{1}{a}x-\dfrac{b}{a}\qquad\textbf{(D)}\ \dfrac{1}{a}x+\dfrac{b}{a}\qquad\textbf{(E)}\ \dfrac{1}{a}x-\dfrac{b}{a}$

Solution

If $(p, q)$ is a point on line $L$, then by symmetry $(q, p)$ must be a point on $K$. Therefore, the points on $K$ satisfy $x=ay+b$.Solving for $y$ yields $y = \dfrac xa-\dfrac ba$. $\Longrightarrow \boxed{E}$

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png