Difference between revisions of "1981 AHSME Problems/Problem 17"

(Solution)
(added navbox)
 
Line 8: Line 8:
 
Substitute <math>x</math> with <math>\frac{1}{x}</math>:
 
Substitute <math>x</math> with <math>\frac{1}{x}</math>:
  
<math>f(\frac{1}{x})+2f(x)=\frac{3}{x}</math>.
+
<math>f\left(\frac{1}{x}\right)+2f(x)=\frac{3}{x}</math>.
  
 
Adding this to <math>f(x)+2f\left(\dfrac{1}x\right)=3x</math>, we get
 
Adding this to <math>f(x)+2f\left(\dfrac{1}x\right)=3x</math>, we get
Line 23: Line 23:
  
 
<math>\frac{2}{x}-x=0</math>, so <math>x=\pm{\sqrt2}</math> are the two real solutions and the answer is <math>\boxed{(B)}</math>.
 
<math>\frac{2}{x}-x=0</math>, so <math>x=\pm{\sqrt2}</math> are the two real solutions and the answer is <math>\boxed{(B)}</math>.
 +
 +
==See also==
 +
 +
{{AHSME box|year=1981|num-b=16|num-a=18}}
 +
{{MAA Notice}}

Latest revision as of 14:11, 28 June 2025

Problem

The function $f$ is not defined for $x=0$, but, for all non-zero real numbers $x$, $f(x)+2f\left(\dfrac{1}x\right)=3x$. The equation $f(x)=f(-x)$ is satisfied by

$\textbf{(A)}\ \text{exactly one real number} \qquad \textbf{(B)}\ \text{exactly two real numbers} \qquad\textbf{(C)}\ \text{no real numbers}\qquad \\ \textbf{(D)}\ \text{infinitely many, but not all, non-zero real numbers} \qquad\textbf{(E)}\ \text{all non-zero real numbers}$

Solution

Substitute $x$ with $\frac{1}{x}$:

$f\left(\frac{1}{x}\right)+2f(x)=\frac{3}{x}$.

Adding this to $f(x)+2f\left(\dfrac{1}x\right)=3x$, we get

$3f(x)+3f\left(\dfrac{1}x\right)=3x+\frac{3}{x}$, or

$f(x)+f\left(\dfrac{1}x\right)=x+\frac{1}{x}$.

Subtracting this from $f(\frac{1}{x})+2f(x)=\frac{3}{x}$, we have

$f(x)=\frac{2}{x}-x$.

Then, $f(x)=f(-x)$ when $\frac{2}{x}-x=\frac{2}{-x}+x$ or

$\frac{2}{x}-x=0$, so $x=\pm{\sqrt2}$ are the two real solutions and the answer is $\boxed{(B)}$.

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png