Difference between revisions of "2018 MPFG Problem 19"

(Created page with "==Problem 19== Consider the sum <cmath>S_n = \sum_{k=1}^{n}\frac{1}{\sqrt{2k-1}}</cmath> Determine <math>\lfloor S_{4901} \rfloor</math>. Recall that if <math>x</math> is a...")
 
(Solution 1)
Line 41: Line 41:
  
 
<math>\lfloor S_n \rfloor = \boxed{98}</math>
 
<math>\lfloor S_n \rfloor = \boxed{98}</math>
 +
 +
~cassphe

Revision as of 02:47, 24 August 2025

Problem 19

Consider the sum

\[S_n = \sum_{k=1}^{n}\frac{1}{\sqrt{2k-1}}\]

Determine $\lfloor S_{4901} \rfloor$. Recall that if $x$ is a real number, then $\lfloor x \rfloor$ (the floor of x) is the greatest integer that is less than or equal to $x$.

Solution 1

We can think of this problem through integration perspectives. Observe that $S_n$ looks very similar to a Riemann sum.

\[_n = 1/\sqrt{1}+1/\sqrt{3}+ ... + 1/\sqrt{9801}\]

We first applicate the right Riemann sum of $y=\frac{1}{\sqrt{x}}$

[insert pic]

\[2S_n > \int{f_{1}^{9803}(\frac{1}{\sqrt{x}})}dx\]

\[2S_n > \left. (2x^{\frac{1}{2}})\right|_{1}^{9803}\]

\[2S_n > 2(\sqrt{9803}-1)\]

\[S_n > \sqrt{9803}-1\]

Then applicate the left Riemann sum of $y=\frac{1}{\sqrt{x}}$

[insert pic2]

\[2(S_n-1) < \int{f_{1}^{9801}(\frac{1}{\sqrt{x}})}dx\]

\[2(S_n-1) < \left. (2x^{\frac{1}{2}})\right|_{1}^{9801}\]

\[S_n-1 > \sqrt{9801}-1\]

\[S_n < \sqrt{9801}\]


We conclude that:

$\sqrt{9803}-1 < S_n < \sqrt{9801}$

$\lfloor S_n \rfloor = \boxed{98}$

~cassphe