Difference between revisions of "2003 AIME II Problems/Problem 6"
(→Problem) |
|||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
| − | In triangle <math>ABC,</math> <math>AB = 13,</math> <math>BC = 14,</math> <math>AC = 15,</math> and point <math>G</math> is the intersection of the medians. Points <math>A',</math> <math>B',</math> and <math>C',</math> are the images of <math>A,</math> <math>B,</math> and <math>C,</math> respectively, after a <math>180^\circ</math> rotation about <math>G.</math> What is the area | + | In triangle <math>ABC,</math> <math>AB = 13,</math> <math>BC = 14,</math> <math>AC = 15,</math> and point <math>G</math> is the intersection of the medians. Points <math>A',</math> <math>B',</math> and <math>C',</math> are the images of <math>A,</math> <math>B,</math> and <math>C,</math> respectively, after a <math>180^\circ</math> rotation about <math>G.</math> What is the area of the union of the two regions enclosed by the triangles <math>ABC</math> and <math>A'B'C'?</math> |
== Solution == | == Solution == | ||
Revision as of 22:07, 14 March 2009
Problem
In triangle
and point
is the intersection of the medians. Points
and
are the images of
and
respectively, after a
rotation about
What is the area of the union of the two regions enclosed by the triangles
and
Solution
Since a
triangle is a
triangle and a
triangle "glued" together on the
side,
.
There are six points of intersection between
and
. Connect each of these points to
.
There are
smaller congruent triangles which make up the desired area. Also,
is made up of
of such triangles.
Therefore,
.
See also
| 2003 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 5 |
Followed by Problem 7 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||