Difference between revisions of "2016 AMC 10A Problems/Problem 23"
m (Replaced commas w/ arrows) |
m (→Solution 2) |
||
| Line 12: | Line 12: | ||
===Solution 2=== | ===Solution 2=== | ||
| − | We can manipulate the given identities to arrive at a conclusion about the binary operator <math>\diamondsuit</math>. Substituting <math>b = c</math> into the | + | We can manipulate the given identities to arrive at a conclusion about the binary operator <math>\diamondsuit</math>. Substituting <math>b = c</math> into the first identity yields <cmath>( a\ \diamondsuit\ b) \cdot b = a\ \diamondsuit\ (b\ \diamondsuit\ b) = a\ \diamondsuit\ 1 = a\ \diamondsuit\ ( a\ \diamondsuit\ a) = ( a\ \diamondsuit\ a) \cdot a = a.</cmath> Hence, <math>( a\ \diamondsuit\ b) \cdot b = a,</math> or, dividing both sides of the equation by <math>b,</math> <math>( a\ \diamondsuit\ b) = \frac{a}{b}.</math> |
Hence, the given equation becomes <math>\frac{2016}{\frac{6}{x}} = 100</math>. Solving yields <math>x=\frac{100}{336} = \frac{25}{84},</math> so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math> | Hence, the given equation becomes <math>\frac{2016}{\frac{6}{x}} = 100</math>. Solving yields <math>x=\frac{100}{336} = \frac{25}{84},</math> so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math> | ||
Revision as of 08:46, 20 December 2017
Problem
A binary operation
has the properties that
and that
for all nonzero real numbers
and
. (Here
represents multiplication). The solution to the equation
can be written as
, where
and
are relatively prime positive integers. What is
Solution
Solution 1
We see that
, and think of division. Testing, we see that the first condition
is satisfied, because
. Therefore, division is the operation
. Solving the equation,
so the answer is
Solution 2
We can manipulate the given identities to arrive at a conclusion about the binary operator
. Substituting
into the first identity yields
Hence,
or, dividing both sides of the equation by
Hence, the given equation becomes
. Solving yields
so the answer is
Solution 3
One way to eliminate the
in this equation is to make
so that
. In this case, we can make
.
By multiplying both sides by
, we get:
Because
Therefore,
, so the answer is
See Also
| 2016 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 22 |
Followed by Problem 24 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2016 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 19 |
Followed by Problem 21 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.