1981 AHSME Problems/Problem 16

Revision as of 14:07, 28 June 2025 by J314andrews (talk | contribs)

Problem

The base three representation of $x$ is \[12112211122211112222\] The first digit (on the left) of the base nine representation of $x$ is

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution 1

Every $2$ digits in base $3$ corresponds to $1$ digit in base $9$. Since this number is $20$ digits long, which is an even number of digits, the answer must correspond to the first $2$ digits on the left. So the answer is $12_{3} = 1 \cdot 3 + 2 = 5\ \fbox{(E)}.

==Solution 2 (Long Way)== Convert$ (Error compiling LaTeX. Unknown error_msg)x$to base 10 then convert the result to base 9. <cmath>12112211122211112222_{3} = 2150029898</cmath>

<cmath>2150029898 = 5484584488_{9}</cmath>

Therefore, the answer is$ (Error compiling LaTeX. Unknown error_msg) \textbf{(E)}\ 5.$-edited by coolmath34

==Solution (Faster Way)== Every 2 numbers in base 3 represents 1 number in base 9. The first 2 numbers on the left,12 = 1(3) + 2(1) = 5.

So the answer is$ (Error compiling LaTeX. Unknown error_msg) \textbf{(E)}\ 5.$

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png