1981 AHSME Problems/Problem 3

Revision as of 13:26, 28 June 2025 by J314andrews (talk | contribs) (added navbox)

Problem

What is the least common multiple of ${\frac{1}{x}}$, $\frac{1}{2x}$, and $\frac{1}{3x}$ is $\frac{1}{6x}$?

Solution

The least common multiple of ${\frac{1}{x}}$, $\frac{1}{2x}$, and $\frac{1}{3x}$ is $\frac{1}{6x}$.

$\frac{1}{x}$ = $\frac{6}{6x}$, $\frac{1}{2x}$ = $\frac{3}{6x}$, $\frac{1}{3x}$ = $\frac{2}{6x}$.

$\frac{6}{6x}$ + $\frac{3}{6x}$ + $\frac{2}{6x}$ = $\frac{11}{6x}$

The answer is $\boxed{\left(D\right) \frac{11}{6x}}$.

See Also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions